首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the existence of several different kinds of factors in 4‐connected claw‐free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4‐connected line graph is hamiltonian, i.e., has a connected 2‐factor. Conjecture 2 (Matthews and Sumner): Every 4‐connected claw‐free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass‐free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 125–136, 2001  相似文献   

2.
It is well‐known that every planar graph has a vertex of degree at most five. Kotzig proved that every 3‐connected planar graph has an edge xy such that deg(x) + deg (y) ≤ 13. In this article, considering a similar problem for the case of three or more vertices that induce a connected subgraph, we show that, for a given positive integer t, every 3‐connected planar graph G with |V(G)| ≥ t has a connected subgraph H of order t such that ΣxV(H) degG(x) ≤ 8t − 1. As a tool for proving this result, we consider decompositions of 3‐connected planar graphs into connected subgraphs of order at least t and at most 2t − 1. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 191–203, 1999  相似文献   

3.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000  相似文献   

4.
In this article, we show that there exists an integer k(Σ) ≥ 5 such that, if G is a graph embedded in a surface Σ without i‐circuits, 4 ≤ ik(Σ), then G is 3‐colorable. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 140–143, 2000  相似文献   

5.
If r|(n‐1) and rn is even, then Kn can be expressed as the union of edge‐disjoint isomorphic r‐regular r‐connected factors. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 15–21, 2000  相似文献   

6.
Several results concerning existence of k‐paths, for which the sum of their vertex degrees is small, are presented. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 170–179, 2000  相似文献   

7.
For a connected graph G=(V,E), an edge set SE is a 3-restricted edge cut if GS is disconnected and every component of GS has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by λ3(G). A graph G is called minimally 3-restricted edge connected if λ3(Ge)<λ3(G) for each edge eE. A graph G is λ3-optimal if λ3(G)=ξ3(G), where , ω(U) is the number of edges between U and V?U, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ3-optimal except the 3-cube.  相似文献   

8.
Let G be a k-edge-connected graph of order n. If k4log2 n then G has a nowhere-zero 3-flow.  相似文献   

9.
In this article, we show that every simple r‐regular graph G admits a balanced P4‐decomposition if r ≡ 0(mod 3) and G has no cut‐edge when r is odd. We also show that a connected 4‐regular graph G admits a P4‐decomposition if and only if |E(G)| ≡ 0(mod 3) by characterizing graphs of maximum degree 4 that admit a triangle‐free Eulerian tour. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 135–143, 1999  相似文献   

10.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

11.
Path connected graphs   总被引:5,自引:0,他引:5  
  相似文献   

12.
We define a partial ordering on the set of σ-polynomials as well as a vertex splitting operation on the set of graphs, and introduce the notions of σ-equivalence and σ-uniqueness of graphs. Let σ(G) be the σ-polynomial of a graph G and (OVERBAR)σ(G) = σ(Gc). Let H = (G, v, A, B) be a vertex splitting graph of G. We prove that (OVERBAR)σ(G) ≤ (OVERBAR)σ(H) and the equality holds if and only if every vertex of A is adjacent to every vertex of B. This gives us an effective means to find σ-equivalent and χ-equivalent graphs. A necessary and sufficient condition for a graph to be χ-unique but not σ-unique is also obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Let κ ≥ 2 be an integer. A k-factor F of a graph G is called a hamiltonian k-factor if F contains a Hamiltonian cycle. In this paper, we shall prove that if G is a graph of order n with κ ≥ 2,n ≥ 8κ - 4, κn even and δ(G) ≥ n/2, then G has a hamiltonian k-factor. © 1997 Wiley & Sons, Inc. J Graph Theory 25: 217–227, 1997  相似文献   

14.
A graph is a P4‐indifference graph if it admits a linear ordering ≺ on its vertices such that every chordless path with vertices a, b, c, d and edges ab, bc, cd has either abcd or dcba. P4‐indifference graphs generalize indifference graphs and are perfectly orderable. We give a characterization of P4‐indifference graphs by forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 155‐162, 1999  相似文献   

15.
Let dλ(t) be a given nonnegative measure on the real line , with compact or infinite support, for which all moments exist and are finite, and μ0>0. Quadrature formulas of Chakalov–Popoviciu type with multiple nodes
where σ=σn=(s1,s2,…,sn) is a given sequence of nonnegative integers, are considered. A such quadrature formula has maximum degree of exactness dmax=2∑ν=1nsν+2n−1 if and only if
The proof of the uniqueness of the extremal nodes τ12,…,τn was given first by Ghizzetti and Ossicini (Rend. Mat. 6(8) (1975) 1–15). Here, an alternative simple proof of the existence and the uniqueness of such quadrature formulas is presented. In a study of the error term R(f), an influence function is introduced, its relevant properties are investigated, and in certain classes of functions the error estimate is given. A numerically stable iterative procedure, with quadratic convergence, for determining the nodes τν, ν=1,2,…,n, which are the zeros of the corresponding σ-orthogonal polynomial, is presented. Finally, in order to show a numerical efficiency of the proposed procedure, a few numerical examples are included.  相似文献   

16.
Planar drawings of clustered graphs are considered. We introduce the notion of completely connected clustered graphs, i.e., hierarchically clustered graphs that have the property that not only every cluster but also each complement of a cluster induces a connected subgraph. As a main result, we prove that a completely connected clustered graph is c-planar if and only if the underlying graph is planar. Further, we investigate the influence of the root of the inclusion tree to the choice of the outer face of the underlying graph and vice versa.  相似文献   

17.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if the set of the vertices of all the paths in C(u,v) contains all the vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to k*-connected graphs.  相似文献   

18.
19.
Given n and i, n > 2, 2 ≤ in ? 1, the smallest size of an n-graph without endvertices is obtained, which ensures a path of length i between any two vertices of the graph.  相似文献   

20.
We find the asymptotic number of connected graphs with k vertices and k−1+l edges when k,l approach infinity, re-proving a result of Bender, Canfield and McKay. We use the probabilistic method, analyzing breadth-first search on the random graph G(k,p) for an appropriate edge probability p. Central is the analysis of a random walk with fixed beginning and end which is tilted to the left.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号