共查询到10条相似文献,搜索用时 15 毫秒
1.
Ken Kojio Yoshiteru Nonaka Tetsuo Masubuchi Mutsuhisa Furukawa 《Journal of Polymer Science.Polymer Physics》2004,42(24):4448-4458
Randomly copolymerized poly(carbonate) glycols were employed as starting materials for the synthesis of polyurethane elastomers (PUEs). The poly(carbonate) glycols had hexamethylene (C6) and tetramethylene (C4) units between carbonate groups in various composition ratios (C4/C6 = 0/100, 50/50, 70/30, and 90/10), and the number‐average molecular weights of these poly(carbonate) glycols were 1000 and 2000. The PUEs were synthesized with these poly(carbonate) glycols, 4,4′‐diphenylmethane diisocyanate, and 1,4‐butanediol by a prepolymer method. Differential scanning calorimetry measurements revealed that the difference between the glass‐transition temperature of the soft segment in the PUEs and the glass‐transition temperature of the original glycol polymer decreased and the melting point of the hard‐segment domain increased with an increasing C4 composition ratio. The microphase separation of the poly(carbonate) glycol‐based PUEs likely became stronger with an increasing C4 composition ratio. Young's modulus of these PUEs increased with an increasing C4 composition ratio. This was due to increases in the degree of microphase separation and stiffness of the soft segment with an increase in the C4 composition ratio. The molecular weight of poly(carbonate) glycol also influenced the microphase‐separated structure and mechanical properties of the PUEs. The addition of different methylene chain units to poly(carbonate) glycol was quite effective in controlling the microphase‐separated structure and mechanical properties of the PUEs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4448–4458, 2004 相似文献
2.
3.
The network of dicumyl peroxide (DCP)/triallyl cyanurate (TAC) crosslinked cis‐1,4‐polyisoprene was studied by solid‐state NMR techniques such as direct‐polarization (DP), cross‐polarization (CP), and proton T2 experiments. Line broadening and cis/trans isomerization of mobile carbons were observed in the DP experiments. The information on rigid carbons of network structures was observed with the CP technique. Motional heterogeneity was examined by proton T2 relaxation experiments. Decreases in long T2 (T2L) values from the mobile non‐network structures and short T2 (T2S) values from the rigid network structures were observed with an increase in peroxide or coagent concentration. The percentage of T2S in T2 relaxation, which is related to network density, was observed to increase with peroxide and coagent addition. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1417–1423, 2000 相似文献
4.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(8):900-913
We report an approach to control the pore characteristics of hierarchically porous polymers (HPPs) containing micropores in a well‐defined 3D continuous mesoporous framework, by the hyper‐crosslinking reaction of a crosslinked block polymer precursor polylactide‐b‐poly(vinylbenzyl chloride‐co‐styrene‐co‐divinylbenzene) (PLA‐b‐P(VBzCl‐co‐S‐co‐DVB)) consisting of bicontinuous PLA and P(VBzCl‐co‐S‐co‐DVB) microdomains. We investigated the hyper‐crosslinking reaction of P(VBzCl‐co‐S‐co‐DVB)s synthesized by reversible addition‐fragmentation chain transfer (RAFT) copolymerization, and then examined the effect of VBzCl, S, DVB, and polylactide macrochain transfer agent (PLA‐CTA) contents in the polymerization mixture on the pore characteristics of the HPPs. We demonstrate that while the VBzCl content responsible for the hyper‐crosslinking reaction primarily governs microporosity, the DVB content has a strong influence on the mesopore structure, as it determines the onset of the gelation of the polymerization mixture, which arrests the emerging disordered bicontinuous morphology induced by the polymerization‐induced microphase separation process. Because the PLA microdomains template the percolating mesoporous space, mesoporosity was mainly controlled by the PLA‐CTA contents. The synergistic combination of hyper‐crosslinking and block polymer self‐assembly in the HPP formation provided a highly reinforced mesoporous framework, stable against pore collapse, and interconnected mesopores. These facilitated diffusion to the microporous surfaces, suggesting its utility for advanced absorbents and catalytic supports. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 900–913 相似文献
5.
Pranabesh Sahu Anil K. Bhowmick 《Journal of polymer science. Part A, Polymer chemistry》2019,57(6):738-751
Motivated by the growing demand for greener and sustainable polymer systems, self‐healing elastomers were prepared by emulsion polymerization of terpene and furfural‐based monomers. Both the method and the monomers were green and sustainable. The synthesized copolymers showed molecular weights between 59,080 and 84,210 Da and glass‐transition temperature (Tg) between ?25 and ?40 °C, implying rubbery properties. A set of one‐dimensional (1D) and two‐dimensional (2D) NMR spectroscopy supported the formation of the copolymer and nuclear spin–spin coupling in the copolymer. Reactivity ratios were determined by conventional linear method. A thermoreversible network was achieved for the first time by reacting the furan‐based polymer with bismaleimide (BM) as a crosslinker, via a Diels?Alder (DA) coupling reaction. The reversible nature of the polymer network was evidenced from infrared and NMR spectroscopy. The thermoreversible character of the DA crosslinked adduct was confirmed by applying retro‐DA reaction (observed in differential scanning calorimeter [DSC] analysis) and mechanical recovery was verified by repeated heating and cooling cycles. The network polymers displayed excellent self‐healing ability, triggered by heating at 130 °C for 4–12 h, when their scratched surface was screened by microscopic visualization. The healing efficiency of the crosslinked DA‐adduct was calculated as 78%, using atomic force microscopy. This work provides a green and efficient approach to prepare new green and functional materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 738–751 相似文献
6.
Lei Zheng Richard J. Farris E. Bryan Coughlin 《Journal of polymer science. Part A, Polymer chemistry》2001,39(17):2920-2928
Ring‐opening metathesis copolymerizations of cyclooctene and the polyhedral oligomeric silsesquioxane (POSS) monomer 1‐[2‐(5‐norbornen‐2‐yl)ethyl]‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo[9.5.1.13,9.15,15.17,13] octasiloxane (POSS–norbornylene) were performed with Grubbs's catalyst, RuCl2(?CHPh)(PCy3)2. Random copolymers were formed and fully characterized with POSS loadings as high as 55 wt %. Diimide reduction of these copolymers afforded polyethylene–POSS random copolymers. Thermogravimetric analysis of the polyethylene–POSS copolymers under air showed a 70 °C improvement, relative to a polyethylene control sample of similar molecular weight, in the onset of decomposition temperature based on 5% mass loss. The homopolymer of POSS–norbornylene was also synthesized. This polymer had a rigid backbone according to 1H NMR evidence of broad olefinic signals. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2920–2928, 2001 相似文献
7.
《先进技术聚合物》2018,29(4):1313-1321
The objective of the present work was to study the sorption kinetics of open‐cell polypropylene/polyolefin elastomer (PP/POE) blend foams. First, open‐cell PP/POE foams of different cell structures were prepared by controlling the foaming temperature via a continuous extrusion foaming process. Second, the effect of the cell structures on the sorption process, rate, and capacity was studied. Pseudo‐first order and pseudo‐second order models were applied to study the sorption kinetics of the PP/POE foams for cyclohexane. Third, the sorption rate and sorption capacity by both volume and weight of the PP/POE foam for different oils and solvents were studied to show how the intrinsic properties of the testing oils and solvents affected the sorption performance. The results showed that the sorption with the PP/POE foams followed the pseudo‐second order kinetics model. Both the cell structures of the foams and the intrinsic properties of the testing oils and solvents affected the sorption performance. For the same testing oil, a higher open‐cell content in the foam was favorable for a higher sorption rate, and a higher void fraction was favorable for a higher sorption capacity. For the same foam, a lower viscosity of the testing oil was favorable for a higher sorption rate. The sorption capacity by volume was closely related to the viscosity of the testing oil, while both the viscosity and the density of the testing oil determined the sorption capacity by weight. 相似文献
8.
Franz Rene Kogler Thomas Koch Herwig Peterlik Sabine Seidler Ulrich Schubert 《Journal of Polymer Science.Polymer Physics》2007,45(16):2215-2231
Inorganic–organic hybrid materials were prepared by free radical polymerization of styrene in the presence of varying amounts of the cluster Zr6O4(OH)4 (methacrylate)12. Stepwise polymerization allowed the preparation of bubble‐ and crack‐free, transparent bulk samples on a 30 g scale with dimensions required for mechanical testing. Small‐angle X‐ray scattering investigations and transmission electron micrographs revealed that the clusters formed randomly distributed aggregates of random size. Solvent uptake in swelling experiments was related to the cluster proportion. Storage moduli in the glassy state were slightly increased when compared with neat polystyrene, but pronounced plateau moduli were observed above the glass transition temperature, which correlated to the cluster proportion. Plateau moduli were used to calculate network parameters such as network density. Onset temperatures of thermal decomposition and the glass transition temperatures of the cluster‐crosslinked polymers were higher than that of neat polystyrene. Thermal expansion coefficients were unaffected in the glassy state, but were gradually reduced above the glass transition temperature with increasing cluster proportion. Both the tensile moduli at room temperature and the yield points increased when polystyrene was doped with the cluster. The strain hardening moduli, as determined in compression tests at large deformations, increased linearly with the cluster proportion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2215–2231, 2007 相似文献
9.
Jionghao He Shinjiro Machida Hiromitsu Kishi Kazuyuki Horie Hidemitsu Furukawa Rikio Yokota 《Journal of polymer science. Part A, Polymer chemistry》2002,40(14):2501-2512
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002 相似文献
10.
Ye Hua Shengmiao Zhang Yun Zhu Yeqian Chu Jianding Chen 《Journal of polymer science. Part A, Polymer chemistry》2013,51(10):2181-2187
Open‐cell hydrophilic polymer foams are prepared through oil‐in‐water Pickering high internal phase emulsions (HIPEs). The Pickering HIPEs are stabilized by commercial titania (TiO2) nanoparticles with adding small amounts of non‐ionic surfactant Tween85. The morphologies, such as average void diameter and interconnectivity, of the foams can be tailored easily by varying the TiO2 nanoparticles and Tween85 concentrations. Further, investigation of the HIPE stability, emulsion structure and the location of TiO2 nanoparticles in resulting foams shows that the surfactant tends to occupy the oil‐water interface at the contact point of adjacent droplets, where the interconnecting pores are hence likely to be formed after the consolidation of the continuous phase. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献