首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple device was recently developed for fast sampling (within a few seconds) of representative melt samples (about 2 g) on a running extruder. An array of such devices has been mounted on a twin‐screw extruder. The goal of this study was to de‐black‐box reactive processing of polymers by studying some typical examples. ‐ Processing of polyolefins in the presence of peroxides: when the polymer is molten and the melt temperature is sufficiently high branching/cross‐linking of PE and degradation of PP occurs; the conversion follows a convex profile along the screw axis, which profile is similar to the exponential profile calculated for peroxide decomposition. ‐ Free‐radical grafting of maleic anhydride (MA) onto polyolefins: MA grafting onto PE and PP also follows a convex profile with branching/cross‐linking as parallel side reaction for PE and degradation for PP; for PE degradation of the formed grafted/cross‐linked gel is observed at the end of the extruder. ‐ Reactive blending of PA‐6 with EPM‐g‐MA: within a few seconds the in‐situ compatibilization reaction, resulting in PA‐6/EPM graft copolymers, is completed and the degree of rubber dispersion has changed from the mm to the sub‐μm range, regardless of the MA content of EPM‐g‐MA and the EPM‐g‐MA content of the blend; PA degradation occurs along the whole extruder.  相似文献   

2.
We studied the chemical reaction process of polypropylene (PP), ethylene‐propylene copolymer (EPM), and ethylene‐propylene‐diene copolymer (EPDM) crosslinking induced by dicumyl peroxide (DCP) using electron spin resonance (ESR). Free radicals appeared at an elevated temperature of around 120 °C and the behavior and kinetics of the reaction process were observed at 180 °C. The radical species detected in PP were alkyl type radicals, formed by the abstraction of hydrogen atoms from the tertiary carbon of polymer chains. For EPDM containing a diene component, the radicals were trapped at double bonds in this diene component to form allyl radicals. The resolutions of these spectra were extremely clear; hence, isotropic spectra of these polymer radicals were obtained. We measured the ESR at high temperatures and confirmed that the process of crosslinking induced by DCP was a free radical reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3383–3389, 2000  相似文献   

3.
The effect of antioxidant on the reaction mechanism of chemical crosslinking of polyethylene with dicumyl peroxide (DCP) at high temperatures was investigated by electron spin resonance (ESR). The crosslinking reactions were induced by the alkyl radicals in polyethylene (PE) formed by the thermal decomposition of DCP above 120°C. The type and the content of radicals were much changed for amine type antioxidants on PE crosslinking. It was confirmed that the radicals originated from DCP decomposition reacted preferentially with the amine type antioxidants to produce the nitroxyl radical and that the antioxidants retarded the initiation reaction of the PE crosslinking reaction. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 349–356, 1999  相似文献   

4.
The chemical structure of polyolefins grafted with maleic anhydride (MA) has been the subject of much speculation, but thorough experimental studies are rare. MA with 99% 13C in the double bond was synthesized and grafted onto PE, EPM and PP in the melt and solution. 1D INADEQUATE 13C NMR spectroscopy was used to characterize the products. Saturated, monomeric MA graft structures are formed. Only for grafted PE short MA oligomers are demonstrated. Grafting occurs on secondary and tertiary carbons depending on the composition of the polyolefin. For PP a new, unsaturated MA graft structure on the polymer chain terminus is identified. All graft structures are rationalized using a simple grafting mechanism.  相似文献   

5.
The effect of an antioxidant on the reaction mechanisms of chemical crosslinking of polyethylene (PE) with dicumyl peroxide (DCP) at high temperatures was investigated using electron spin resonance (ESR). For sulfur‐ and phosphorous‐type antioxidants, changes of radical species and their contents during the PE crosslinking reaction were observed. It was confirmed that these antioxidants reacted preferentially with radicals yielded by decomposed DCP, restraining the crosslinking of PE by the increased antioxidant content. The compound of DCP and antioxidant decomposed to form 2‐phenyl isopropyl radicals. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3092–3099, 2000  相似文献   

6.
The effect of antioxidant on the reaction mechanism of chemical crosslinking of polyethylene (PE) with dicumyl peroxide (DCP) at high temperatures was investigated by electron spin resonance (ESR). The antioxidant reacts with the alkyl radicals in PE formed by the thermal decomposition of DCP above 120°C, and disturbs the crosslinking. A phenolic type antioxidant produced the phenoxy radical by the reaction with alkyl radicals formed in PE. It is suggested that the selection of a suitable antioxidant for PE crosslinking can be made by ESR analysis. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2431–2439, 1997  相似文献   

7.
Chemical conversion and morphological evolution of PA‐6/EPM/EPM‐g‐MA blends along a twin screw extruder were monitored by quickly collecting small samples from the melt at specific barrel locations. The results show that the MA content of all blends decreases drastically in the first zone of the extruder, i.e., upon melting of the blend components. Significant changes in morphology are also observed at this stage. A correlation between chemistry and morphology could thus be established. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1311–1320, 1999  相似文献   

8.
The in-situ compatibilization of PP/PA6 blend was studied in a twin screw extruder. The maleic anhydride (MA) content, peroxide concentration, shear rate and feeding order were among the variables investigated. Degree of grafting of samples collected prior to feeding of PA6 into the extruder was measured using titration combined with FTIR technique. From the SEM results it was found that the increasing of initial MA concentration led to larger PA particle size which could be related to secondary reactions between excess MA and PA. The melt linear viscoelastic measurements performed on the blend samples and the obtained relaxation time spectra showed shorter form relaxation time and interfacial relaxation time for one-step compatibilized sample compared to the sample prepared by the two-step method with the same degree of grafting. This was attributed to the stronger interfacial interaction of the one-step compatibilized blend samples which could be resulted from greater efficiency of grafting and/or compatibilization. These results were supported by SEM results which showed smaller particle size for the one-step compatibilized samples. It was demonstrated that melt linear viscoelastic measurement could provide a great insight into understanding the compatibilization process in twin screw extruder.  相似文献   

9.
The control of the molecular weight distribution of poly(propylene) resins by peroxide degradation is widely used in polymer industry. It allows to adjust the viscosity of these resins to the level required for processing applications. The purpose of this work was to characterise the influence of peroxide degradation on the rheological behaviour of an homopolymer PP and a block copolymer PP/PE, and to use these results to obtain a predictive model of the degradation in a twin‐screw extruder. By coupling a thermomechanical model of the twin‐screw extrusion process, a kinetic model of the considered reactions and the rheological behaviour, it was possible to calculate the changes in molecular weight along the extruder, during the peroxide‐controlled degradation.  相似文献   

10.
Minority structures are considered to be defect structures that are formed during polyethylene (PE) preparation and during the crosslinking process in PE. The minority structures that play the predominant role in PE crosslinking are vinyl double bonds. Moreover, the decomposition of dicumyl peroxide in PE does not proceed according to first-order kinetics, but induced peroxide decomposition also takes part. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 675–688, 2004  相似文献   

11.
Coefficients of linear thermal expansion (CTE) for poly(propylene)/ poly(propylene)‐grafted‐maleic anhydride/montmorillonite ethylene‐co‐octene elastomer (PP/PP‐g‐MA/MMT/EOR) blend nanocomposites were determined as a function of MMT content and various PP‐g‐MA/organoclay masterbatch ratios. The nanocomposites were prepared in a twin‐screw extruder at a fixed 30 wt % elastomer, 0–7 wt % MMT content, and various PP‐g‐MA/organoclay ratio of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by the maleated PP helps to reduce the size of the dispersed phase elastomer particles in the PP matrix. The elastomer particle size decreased significantly as the PP‐g‐MA/organoclay ratio and MMT content increased; the elastomer particles viewed // to flow direction (FD) are smaller and less deformed compared to those viewed // to transverse direction (TD). The elastomer particle shape based on the view along the three orthogonal directions of the injection molded sample is similar to a prolate ellipsoid. The CTE decreased significantly in the FD and TD, whereas a slight increase is observed in the normal direction in the presence of MMT and PP‐g‐MA. The Chow model based on a two population approach showed better fit to experimental CTE when the effect of MMT and elastomer are considered individually. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013 , 51, 952–965  相似文献   

12.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
The effect of α‐methyl styrene dimer (AMSD), which is used as a scorch retarder, on the reaction mechanisms of the chemical crosslinking of polyethylene (PE) with dicumyl peroxide (DCP) at high temperatures was investigated using electron spin resonance. When AMSD was added to PE containing DCP, the AMSD radical was observed; however, the PE alkyl radical or allyl radical presence was not detected. At 145 °C, crosslinking was obstructed as a result of the reaction between AMSD and alkyl radicals. As the temperature increased, AMSD fragmented to form 2‐phenyl‐2‐propyl and double bonds in PE. This generation of double bonds, however, accelerated crosslinking at 180 °C and was more effective than when AMSD was not present. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2151–2156, 2001  相似文献   

14.
Polymer modification through silane grafting and its subsequent crosslinking allows the rheological properties of a polymer to be tuned from those of a viscous melt to those of a crosslinked elastic network. In this study, a metallocene polyolefin resin is grafted with vinyl trimethoxy silane (VTMS) using dicumyl peroxide (DCP) as the initiator and is subsequently crosslinked in an oxidative environment. Dynamic rheological experiments are conducted to elucidate the effects of DCP and VTMS concentrations on the grafting and ensuing crosslinking processes. We find that the addition of VTMS alone to the polymer produces no grafting. In contrast, the presence of DCP by itself leads to direct crosslinking between polymer chains as suggested by an increase in elastic modulus and complex viscosity. Samples containing both DCP and VTMS undergo silane grafting, with the extent of grafting increasing with increasing DCP concentration. This conclusion is borne out by both rheological and Fourier transform infrared measurements. The grafted samples undergo silane crosslinking only in an oxidative environment and at temperatures equal to or greater than 190 °C. During crosslinking, the samples undergo a transition from a viscous melt with frequency‐dependent moduli to a gel exhibiting frequency‐independent moduli with the elastic modulus exceeding the viscous modulus. However, the kinetics of crosslinking and the extent of the modulus increase are a function of the DCP concentration, with both exhibiting a maximum at a specific DCP and VTMS combination. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2468–2479, 2000  相似文献   

15.
Nitroxyl radicals were used as functionalizing agents during the free radical postreactor modification process of polyolefins carried out in the melt. The 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (HO‐TEMPO) and the 4‐benzoyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (BzO‐TEMPO) free radicals were successfully grafted onto a polyethylene‐based material (ethylene‐co‐1‐octene copolymer) by coupling reaction with polymer macroradicals; these last were formed by H‐abstraction through peroxide addition. The macromolecular structure of the functionalized polyolefins was assessed by 1H‐NMR, FTIR spectroscopy, and SEC measurements which were used to evidence the grafting site, to evaluate the grafting level and to highlight the occurrence of chain extension through crosslinking side reactions. Indeed the use of proper model compounds allowed the preparation of accurate FTIR calibration curves for the quantitative determination of the functionalization degree. Besides the high temperature SEC analysis highlighted that this fast and simple coupling reaction between macroradicals and nitroxyl free radicals grants the grafting of functionalities onto the polyolefin backbone by contemporarily preventing the side reactions liable of the structure and MW modification of the pristine polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The thermal decomposition of dialkyl peroxides, peroxyketals, and peroxyesters was realized in order to study the functionalization of polyethylene in the molten state. Two radicals were produced: one to abstract a hydrogen to the polyolefin, the other to combine with such a macroradical. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2957–2963, 2000  相似文献   

17.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

18.
Polycaprolactone-graft-maleic anhydride (PCL-g-MA) copolymer was prepared by grafting maleic anhydride onto PCL in a batch mixer and in an extruder using dicumyl peroxide as the initiator. The graft content was determined with the volumetric method by converting the anhydride functions to acid groups and then titrating with ethanolic potassium hydroxide. The grafted polymer was extracted with xylene to remove any unreacted monomer before the estimation step. The effect of temperature and the various concentrations of the initiator and monomer used for the grafting reaction were investigated. The presence of residual initiator in the reaction product was checked using thin-layer chromatography. Molecular weight determination was carried out for the pure and grafted polymer using gel permeation chromatography to determine if chain scission was present. Results indicate that maleic anhydride is grafted onto PCL using free radical initiators. The grafting reaction was confirmed by FTIR and NMR techniques. FTIR spectra showed absorption bands around 1785 and 1858 cm−1. NMR spectra gave signals for methine proton at 3.47 ppm. For a given peroxide level, a higher temperature or residence (reaction) time gave higher percentage of grafted MA. There was an optimum temperature and initiator concentration after which the percentage of MA grafted on PCL decreased. The number-average molecular weight, tensile strength, and the percent elongation of PCL-g-MA were comparable to those of PCL before grafting. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1139–1148, 1997  相似文献   

19.
High-speed surface modification of polypropylene (PP) and polyethylene (PE) films has been achieved by liquid phase photograft polymerisation of acrylic acid (AA) and hydroxypropyl acrylate (HPA). Benzophenone was used as photoinitiator to generate polymer radicals at the surface of the polyolefin film. The grafting reaction was carried out in aqueous solution or with the neat monomer, which was laminated between two PP films, in the presence of air. Under the intense illumination of a UV-curing line, acrylic acid was grafted within seconds to polypropylene films or fabrics, which were thus made hydrophilic. Direct evidence of surface grafting was obtained through infrared spectroscopy analysis and surface energy measurements. This continuous photografting process proved to be very efficient to improve the adhesion of UV-cured acrylate coatings on polyolefin-made materials.  相似文献   

20.
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号