首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper aims at the development of a new stabilization formulation based on the finite calculus (FIC) scheme for solving the Euler equations using the Galerkin FEM on unstructured triangular grids. The FIC method is based on expressing the balance of fluxes in a space–time domain of finite size. It is used to prevent the creation of instabilities typically present in numerical solutions due to the high convective terms and sharp gradients. Two stabilization terms, respectively called streamline term and transverse term, are added via the FIC formulation to the original conservative equations in the space–time domain. An explicit fourth‐order Runge–Kutta scheme is implemented to advance the solution in time. The presented numerical test examples for inviscid flows prove the ability of the proposed stabilization technique for providing appropriate solutions especially near shock waves. Although the derived methodology delivers precise results with a nearly coarse mesh, a mesh refinement technique is coupled to the solution process for obtaining a suitable mesh particularly in the high‐gradient zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We present a Lagrangian formulation for finite element analysis of quasi‐incompressible fluids that has excellent mass preservation features. The success of the formulation lays on a new residual‐based stabilized expression of the mass balance equation obtained using the finite calculus method. The governing equations are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities and the pressure. The merits of the formulation in terms of reduced mass loss and overall accuracy are verified in the solution of 2D and 3D quasi‐incompressible free‐surface flow problems using the particle FEM ( www.cimne.com/pfem ). Examples include the sloshing of water in a tank, the collapse of one and two water columns in rectangular and prismatic tanks, and the falling of a water sphere into a cylindrical tank containing water. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We present an efficient technique for the solution of free surface flow problems using level set and a parallel edge‐based finite element method. An unstructured semi‐explicit solution scheme is proposed. A custom data structure, obtained by blending node‐based and edge‐based approaches is presented so to allow a good parallel performance. In addition to standard velocity extrapolation (for the convection of the level set function), an explicit extrapolation of the pressure field is performed in order to impose both the pressure boundary condition and the volume conservation. The latter is also improved with a modification of the divergence free constrain. The method is shown to allow an efficient solution of both simple benchmark cases and complex industrial examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

6.
A flow‐condition‐based interpolation finite element scheme is presented for use of triangular grids in the solution of the incompressible Navier–Stokes equations. The method provides spatially isotropic discretizations for low and high Reynolds number flows. Various example solutions are given to illustrate the capabilities of the procedure. This article and been retracted and replaced. See retraction and replacement notice DOI: 10.1002/fld.1247 . Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we present a problem we have encountered using a stabilized finite element method on fixed grids for flows with interfaces modelled with the level set approach. We propose a solution based on enriching the pressure shape functions on the elements cut by the interface. The enrichment is used to enable the pressure gradient to be discontinuous at the interface, thus improving the ability to simulate the behaviour of fluids with different density under a gravitational force. The additional shape function used is local to each element and the corresponding degree of freedom can therefore be condensed prior to assembly, making the implementation quite simple on any existing finite element code. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a boundary element formulation employing a penalty function technique for two-dimensional steady thermal convection problems. By regarding the convective and buoyancy force terms in Navier-Stokes equations as body forces, the standard elastostatics analysis can be extended to solve the Navier-Stokes equations. In a similar manner, the standard potential analysis is extended to solve the energy transport equation. Finally, some numerical results are included, for typical natural convection problems, in order to demonstrate the efficiency of the present method.  相似文献   

10.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid are performed by the Galerkin method. The second-order semiimplicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are linearized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effiectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.  相似文献   

12.
New a posteriori error indicators based on edgewise slope‐limiting are presented. The L2‐norm is employed to measure the error of the solution gradient in both global and element sense. A second‐order Newton–Cotes formula is utilized in order to decompose the local gradient error from a ??1 finite element solution into a sum of edge contributions. The slope values at edge midpoints are interpolated from the two adjacent vertices. Traditional techniques to recover (superconvergent) nodal gradient values from consistent finite element slopes are reviewed. The deficiencies of standard smoothing procedures—L2‐projection and the Zienkiewicz–Zhu patch recovery—as applied to nonsmooth solutions are illustrated for simple academic configurations. The recovered gradient values are corrected by applying a slope limiter edge‐by‐edge so as to satisfy geometric constraints. The direct computation of slopes at edge midpoints by means of limited averaging of adjacent gradient values is proposed as an inexpensive alternative. Numerical tests for various solution profiles in one and two space dimensions are presented to demonstrate the potential of this postprocessing procedure as an error indicator. Finally, it is used to perform adaptive mesh refinement for compressible inviscid flow simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
We propose a novel fitted finite element method for two‐phase Stokes flow problems that uses piecewise linear finite elements to approximate the moving interface. The method can be shown to be unconditionally stable. Moreover, spherical stationary solutions are captured exactly by the numerical approximation. In addition, the meshes describing the discrete interface in general do not deteriorate in time, which means that in numerical simulations, a smoothing or a remeshing of the interface mesh is not necessary. We present several numerical experiments for our numerical method, which demonstrate the accuracy and robustness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A reference solutions for phase change involving convection in the melt is currently missing. In the present study, we focus on the problem of melting of pure tin in a square cavity heated from the side, which is used as a benchmark test problem. The mathematical model used for the simulations is based on the enthalpy formulation. Extensive numerical computations are performed with grids as fine as 800 × 800. The convergence of the numerical solution is demonstrated and its level assessed. Data values and plots are provided for use as a reference solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The Dorodnitsyn boundary later formulation is given a finite element interpretation and found to generate very accurate and economical solutions when combined with an implicit, non-iterative marching scheme in the downstream direction. The algorithm is of order (Δ2u, Δx) whether linear or quadratic elements are used across the boundary layer. Solutions are compared with a Dorodnitsyn spectral formulation and a conventional finite difference formulation for three Falkner-Skan pressure gradient cases and the flow over a circular cylinder. With quadratic elements the Dorodnitsyn finite element formulation is approximately five times more efficient than the conventional finite difference formulation.  相似文献   

16.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A fourth‐order compact finite difference scheme on the nine‐point 2D stencil is formulated for solving the steady‐state Navier–Stokes/Boussinesq equations for two‐dimensional, incompressible fluid flow and heat transfer using the stream function–vorticity formulation. The main feature of the new fourth‐order compact scheme is that it allows point‐successive overrelaxation (SOR) or point‐successive underrelaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr attempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity with benchmark solutions and compared with some of the accurate results available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The solution of the non-linear set of equations arising from the application of the finite element method to non-Newtonian fluid flow problems often requires large amounts of computer time. Four iteration schemes (Picard, Newton-Raphson, Broyden and Dominant Eigenvalue method) are compared in three different flow geometries using a shear-thinning fluid model. Points of comparison involve the computer time necessary to converge the equations, ease of implementation, radius of convergence and rate of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号