首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Enantiomeric separation by capillary electrochromatography with beta-cyclodextrin-bonded negatively charged polyacrylamide gels was examined. The columns used are capillaries filled with a negatively charged polyacrylamide gel, a so-called monolithic stationary phase, to which allyl carbamoylated beta-CD (AC-beta-CD) derivatives covalently bind. The capillary wall is activated first with a bifunctional reagent to make the resulting gel bind covalently to the inner surface of the fused-silica tubing. Enantiomeric separations of 15 cationic compounds were achieved using the above-mentioned columns and mobile phases of 200 mmol l(-1) Tris-300 mmol I(-1) boric acid buffer (pH 7.0 or 9.0) or 200 mmol l(-1) Tris-300 mmol l(-1) boric acid buffer (pH 7.0) containing an achiral crown ether (18-crown-6). Enantiomeric separations of two neutral compounds were also achieved using 200 mmol l(-1) Tris-300 mmol l(-1) boric acid buffer (pH 9.0) as a mobile phase. High efficiencies of up to 150,000 plates m(-1) were obtained. Both the within- and between-run reproducibilities of retention time and separation factor were good. The reproducibilities of retention time and separation factor for three different columns prepared from a different batch of monomers were acceptable. The gel-filled capillaries were stable for at least 3 months with intermittent use, utilizing the mobile phase of 200 mmol I(-1) Tris-300 mmol I(-1) boric acid buffer (pH 9.0).  相似文献   

2.
A novel enantiomeric separation method by capillary electrochromatography with chiral crown ether-bonded negatively charged polyacrylamide gels is presented. Two kinds of chiral crown ether derivatives, (+)-tetraallyl 18-crown-6 carboxylate and (+)-18-crown-6 tetracarboxylic acid 2-allyl ester were synthesized and allowed to covalently bind to a negatively charged polyacrylamide gel, a so-called monolithic stationary phase, respectively. The gel was placed in fused-silica tubing, the walls of which had been activated with a bifunctional reagent to make the resulting gel bind covalently to the inner surface. Enantiomeric separations of 12 primary amino compounds were achieved using these columns and mobile phases of 200 mM triethanolamine-300 mM boric acid buffers with high efficiencies of up to 135000 plates m(-1). Both the within- and between-run reproducibilities of retention time and separation factor were good. The reproducibilities of retention time and separation factor for three different columns prepared from a different batch of monomers were acceptable. The gel-filled capillaries were stable for at least 13 months with intermittent use for 3 months followed by storage at room temperature for 10 months. The result of the optical purity test of alanine-2-naphthylamide is also described.  相似文献   

3.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

4.
[2‐(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface‐initiated atom transfer radical polymerization method on the inner surface of fused‐silica capillaries resulting in a covalently bound poly([2‐(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run‐to‐run repeatability, capillary‐to‐capillary and day‐to‐day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β‐blockers with the separation efficiencies ranging from 132 000 to 303 000 plates/m, and from 82 000 to 189 000 plates/m, respectively. In addition, challenging high‐ and low‐density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.  相似文献   

5.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

6.
Inspired by the chiral recognition ability of β‐cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β‐cyclodextrin/polydopamine composite material coated‐capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro‐osmotic flow studies indicated that β‐cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β‐cyclodextrin/polydopamine‐coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column‐to‐column repeatability were in the range of 0.41–1.74, 1.03–4.18, and 1.66–8.24%, respectively. Moreover, the separation efficiency of the β‐cyclodextrin/polydopamine‐coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns.  相似文献   

7.
This paper describes the preparation and optimization of packed capillary columns for reversed‐phase separation of steroids with CEC. The fabrication of on‐column frits is considered to be the most important step for obtaining a reproducible packed column for CEC separation. Porous silicate frits were generated in a fused‐silica capillary by heating the silica gel/sodium hydroxide solutions electrically. The optimized conditions involve silica gel (10.8%), sodium hydroxide (5.8%), and heating time (5 sec) with heating voltage (5V) for obtaining a 100‐μ end‐frit that can withstand pressure over 6000 psi. A HPLC pump was utilized to pack the 5‐μm ODS particle slurry into the capillary column. The ODS packed capillaries were then utilized for the separation of four anabolic cholesterols with a capillary electrophoresis system without pressurization of the column. The reproducibility of the packed columns was evaluated by measuring the relative standard deviations of four steroids. The relative standard deviations of migration time for column‐to‐column, day‐to‐day, and run‐to‐run are less than 7%, 2%, and 1% for four steroids, respectively.  相似文献   

8.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

9.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

10.
The present study investigated the separation of bicyclic β‐amino acids with bicyclo[2.2.2]octane, bicyclo[3.1.1]heptane and cyclopenta[d][1,2]oxazole core structures by capillary electrophoresis using native cyclodextrins as well as neutral and charged derivatives as chiral selectors. The amino acids were derivatized with dansyl chloride to provide a UV chromophore. Separations were carried out at 20°C in a 48.5/40 cm, 50 µm fused‐silica capillary at an applied voltage of 20 kV. Fifty millimolar sodium phosphate background electrolytes pH 2.5 and 7.2 containing either 5 or 30 mg/mL of the CDs were used. For the majority of the investigated CDs, enantioseparations could only be achieved at pH 2.5 when the analytes are positively charged. Successful enantioseparations as negatively charged analytes at pH 7.2 were only observed for few compounds. In the case of methyl‐γ‐cyclodextrin, opposite enantiomer migration order was observed in pH 2.5 or 7.2 background electrolytes. Dependence of the enantiomer migration order on the size of the cavity of the cyclodextrins was also found. Furthermore, the degree of methylation of β‐cyclodextrin derivatives affected the migration order of several analyte enantiomers.  相似文献   

11.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

12.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

13.
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity.  相似文献   

14.
In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused‐silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω‐iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused‐silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples.  相似文献   

15.
《Electrophoresis》2017,38(7):1060-1067
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono‐6‐deoxy‐6‐(3‐methylimidazolium)‐β‐cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β‐cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β‐cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β‐cyclodextrin ionic liquid. The satisfied result demonstrated that the β‐cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation.  相似文献   

16.
A novel open‐tubular capillary electrochromatography column coated with β‐cyclodextrin was prepared using the sol‐gel technique. In the sol‐gel approach, owing to the three‐dimensional network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating enantiomers were shown. The influences of capillary inner diameter, coating time, organic modifier, buffer pH, and buffer concentration on separation were investigated. The sol‐gel‐coated β‐cyclodextrin column has shown improved enantioseparation efficiency of chlorphenamine, brompheniramine, pheniramine, zopiclone in comparison with the sol‐gel matrix capillary column. The migration time relative standard deviation of the separation of the enantiomers was less than 0.89% over five runs and 2.9% from column to column. This work confirmed that gold nanoparticles are promising electrochromatographic support to enhance the phase ratio of open‐tubular capillary electrochromatography column in capillary electrochromatography.  相似文献   

17.
Polystyrene (PS) nanoparticles coated by BSA, hereafter denoted as PS/BSA, were prepared and chemically immobilized for the first time onto a capillary inner wall for open‐tubular CEC (OTCEC). EOF and scanning electron micrography were used to characterize the prepared nanoparticle‐coated capillaries. To investigate the performance of the prepared columns in OTCEC, chiral separation of d ,l ‐tryptophan (dl ‐Trp) was performed in monolayer BSA‐modified capillary and PS/BSA nanoparticle‐coated columns. The results indicated that the nanoparticle‐modified column afforded a higher resolution compared with the monolayer type. Rapid enantioseparation of dl ‐Trp (within 3 min) was achieved with the PS/BSA‐immobilized column using an electroosmotic pump‐assisted CEC. Enantiomer separations of other compounds like dl ‐tyrosine and warfarin were also achieved with the column. Besides, run‐to‐run and column‐to‐column repeatabilities of the PS/BSA‐coated column in the chiral separation were systematically introduced.  相似文献   

18.
A laboratory‐made INSTCoated fused‐silica capillary has been newly used for CE separation of four mixtures of proteins in sodium phosphate BGEs at pH 3.0 and 2.5, respectively. The obtained separation efficiencies range from 145 000 theoretical plates per meter for myoglobin to 1 216 000 m?1 for lysozyme. A total of 49–89% of the number of theoretical plates was obtained in a commercial polyvinyl alcohol coated capillary compared to the INSTCoated capillary under the same experimental conditions, 0–86% was obtained in a laboratory polyacrylamide‐coated capillary, and only 0–6% was obtained in an uncoated fused‐silica capillary. The RSD values for the intraday repeatability for an INSTCoated capillary were 0.1–1.0% (migration time) and 0.3–2.4% (peak area); RSD values for the interday repeatability in the same capillary are 0.6–1.4% (migration time) and 2.4–5.5% (peak area); RSD values for interday repeatability between different capillaries equaled 1.7–2.1% (migration time) and 2.8–10.9% (peak area). The INSTCoated capillary has been further used for rapid determination of globin chains isolated from red blood cells. A separation of α and β chains prepared from adult blood has been completed in 3 min with a peak resolution of 1.3, and the separation of α and Gγ chains prepared from newborn blood took 3 min with a peak resolution of 3.6.  相似文献   

19.
Derivatized β‐cyclodextrin (β‐CD) functionalized monolithic columns were prepared by a “one‐step” strategy using click chemistry. First, the intended derivatized β‐CD monomers were synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD and then sulfonation or methylation was carried out. Finally, monolithic columns were prepared through a one‐step in situ copolymerization of the derivatized β‐CD monomer and ethylene glycol dimethacrylate. The sulfated β‐CD‐based monolith was successfully applied to the hydrophilic interaction liquid chromatography separation of nucleosides and small peptides, while the methylated β‐CD‐functionalized monolith was useful for the separation of nonpolar compounds and drug enantiomers in capillary reversed‐phase liquid chromatography. The structures of the monomers were characterized by Fourier transform infrared spectroscopy and mass spectrometry. The physicochemical properties and column performance of monoliths were evaluated by scanning electron microscopy and micro high performance liquid chromatography. This strategy has considerable prospects for the preparation of other derivatized CD‐functionalized methacrylate monoliths.  相似文献   

20.
The effect of different parameters controlling the characteristics of linear polyacrylamide coatings deposited on the inner wall of fused-silica capillaries and their influence on capillary electrophoresis (CE) performance of these coated columns is investigated. To carry out this study, a reproducible procedure to obtain capillaries with similar extent of modification of the surface silanols with 7-oct-1-enyltrimethoxisilane was first approached. Next the polymer attachment to the silica wall, via covalent linkage to the silyl reagent grafted onto the silica, was investigated. In this way, by using columns with a similar silylation extent, differences in CE performance observed among capillaries coated under diverse conditions could be assigned to the characteristics of the polyacrylamide layer. It is demonstrated that the characteristics and reproducibility of these polymeric coatings depend on the adequate control of both the temperature of polymerization and the degassing of the polymerizing dissolutions used. More interestingly, it is also demonstrated that the quantities of monomer (acrylamide), initiator (ammonium persulfate) and activator (N,N,N′,N′-tetramethylethylenediamine), and the ratio among them used in the preparation of the coating polymer have a large influence on the performance of CE columns. The optimum conditions for preparing the polyacrylamide coatings are discussed. The applicability of these linear polyacrylamide-coated capillaries to the separation of basic and acidic proteins in free zone CE is demonstrated. Besides, the use of these coated columns in capillary gel electrophoresis for the separation of DNA fragments is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号