首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactivity of (thiacyclic)‐2,3‐dihydro‐2,2‐dimethyl‐4H‐thiopyran‐4‐one ( 1a ) in light‐induced cycloadditions to furan ( F ), acrylonitrile ( AN ), or 2,3‐dimethylbut‐2‐ene ( TME ) is compared to that of (carbocyclic) 5,5‐dimethylcyclohex‐2‐enone ( 1b ). Whereas for the more‐flexible thiacycle, the efficiency of [2+2]‐photocycloadduct formation with AN or TME is generally much lower, the diastereoselectivity regarding the ring fusion in the bicyclo[4.2.0]octanes is quite similar for both enones. In contrast, 1a affords exclusively trans‐fused [4+2] cycloadducts with F , while 1b gives predominantly the corresponding cis‐fused products.  相似文献   

2.
Irradiation (350 nm) of the newly synthesized 3‐(alk‐1‐ynyl)cyclohept‐2‐en‐1‐ones 1 and 2 leads to the selective formation of tricyclic head‐to‐head dimers. In the presence of 2,3‐dimethylbuta‐1,3‐diene, the (monocyclic) enone 1 affords trans‐fused 7‐alkynyl‐bicyclo[5.2.0]nonan‐2‐ones as major photoproducts, whereas photocycloaddition of benzocyclohept‐5‐en‐7‐one 2 to the same diene gives preferentially the eight‐membered cyclic allene 16 via ‘end‐to‐end’ cyclization of the intermediate allyl‐propargyl biradical 22 . On contact with acid, cycloocta‐1,2,5‐triene 16 isomerizes to cycloocta‐1,3,5‐triene 18 .  相似文献   

3.
A method for the synthesis of bicyclo[4.1.0]heptenes from 1,6‐enynes through Pd‐catalyzed cycloisomerization has been developed. N‐ and O‐tethered 1,6‐enynes were successfully transformed to their corresponding 3‐aza‐ and 3‐oxabicyclo[4.1.0]heptenes in reasonable‐to‐high yields using the catalysts [PdCl2(CH3CN)2]/P(OPh)3 or [Pd(maleimidate)2(PPh3)2] in toluene. The computational calculations using density functional theory indicate that [PdCl2{P(OPh)3}] in the oxidation state PdII acts as the active catalyst species for the formation of 3‐azabicyclo[4.1.0]heptenes through 6‐endo‐dig cyclization.  相似文献   

4.
The planar chiral 2‐phospha[3]ferrocenophane I has been shown to be the first efficient nucleophilic organocatalyst for the enantioselective synthesis of cyclopentenylphosphonates, through [3+2] cyclizations between diethyl allenylphosphonate and α,β‐unsaturated ketones. The same catalyst has also been applied to the highly enantioselective [3+2] cyclizations of allenic esters with dibenzylideneacetone and analogous bis‐enones, leading to functionalised cyclopentenes with either monocyclic or spirocyclic structures (ee 84–95 %). It has been shown that the residual enone functions in the resulting cyclopentenes can be involved in subsequent cyclization steps to afford unprecedented C2‐symmetric bis‐cyclopentenylketones. In order to provide insight into the behaviour of FerroPHANE I as a chiral catalyst in [3+2] cyclisations, the energetically most favoured isomers of the key phosphine‐allene adduct have been calculated by DFT methods. Factors likely to control the chiral induction process are highlighted.  相似文献   

5.
The photochemical reactions of 2‐substituted N‐(2‐halogenoalkanoyl) derivatives 1 of anilines and 5 of cyclic amines are described. Under irradiation, 2‐bromo‐2‐methylpropananilides 1a – e undergo exclusively dehydrobromination to give N‐aryl‐2‐methylprop‐2‐enamides (=methacrylanilides) 3a – e (Scheme 1 and Table 1). On irradiation of N‐alkyl‐ and N‐phenyl‐substituted 2‐bromo‐2‐methylpropananilides 1f – m , cyclization products, i.e. 1,3‐dihydro‐2H‐indol‐2‐ones (=oxindoles) 2f – m and 3,4‐dihydroquinolin‐2(1H)‐ones (=dihydrocarbostyrils) 4f – m , are obtained, besides 3f – m . On the other hand, irradiation of N‐methyl‐substituted 2‐chloro‐2‐phenylacetanilides 1o – q and 2‐chloroacetanilide 1r gives oxindoles 2o – r as the sole product, but in low yields (Scheme 3 and Table 2). The photocyclization of the corresponding N‐phenyl derivatives 1s – v to oxindoles 2s – v proceeds smoothly. A plausible mechanism for the formation of the photoproducts is proposed (Scheme 4). Irradiation of N‐(2‐halogenoalkanoyl) derivatives of cyclic amines 5a – c yields the cyclization products, i.e. five‐membered lactams 6a , b , and/or dehydrohalogenation products 7a , c and their cyclization products 8a , c , depending on the ring size of the amines (Scheme 5 and Table 3).  相似文献   

6.
The photochemical reactions of various ‘N‐methacryloyl acylanilides’ (=N‐(acylphenyl)‐2‐methylprop‐2‐enamides) have been investigated. Under irradiation, the acyl‐substituted anilides 1a – 1c and 1o afforded exclusively the corresponding quinoline‐based cyclization products of type 2 (Table 1). In contrast, irradiation of the benzoyl (Bz)‐substituted anilides 1e – 1h afforded a mixture of the open‐chain amides 4e – 4h and the cyclization products 2e – 2h . Irradiation of the para‐acyl‐substituted anilides 6a – 6e and 6h afforded the corresponding quinoline‐based cyclization products of type 5 as the sole products (Table 2). The formation of the cyclization products 2a – 2c and 2o can be rationalized in terms of 6π‐electron cyclization, followed by thermal [1,5] acyl migration, and that of compounds 3p, 5a – 5e , and 5h can be explained by a 6π‐electron cyclization only. The formation of the open‐chain amides 4e – 4h probably follows a mechanism involving a 1,7‐diradical, C and a spirolactam of type D (Scheme). Long‐range ζ‐H abstraction by the excited carbonyl O‐atom of the benzoyl group on the aniline ring is expected to proceed via a nine‐membered cyclic transition state, as proposed on the basis of X‐ray crystallographic analyses (Fig. 2).  相似文献   

7.
Dihydrothiinone 9a undergoes photocycloaddition regioselectively to all three C?C bonds of penta‐1,2,4‐triene ( 10 ), the relative stabilities of the biradical intermediates determining the product distribution. In contrast, cyclohexenone 9b and dihydropyranone 9c afford more complex mixtures of bicyclo[4.2.0]octanones, which also turn out to be less stable on chromatographic workup, reflecting the higher strain due to the shorter bond lengths (C? O and C? C vs. C? S) in the six‐membered rings, respectively.  相似文献   

8.
Irradiation of newly synthesized 2,2-dimethyl-2,3-dihydro-4H-thiin-4-one ( 1 ) in furan affords the two [4 + 2] cycloadducts 3 and 4 and the [2 + 2] cycloadduct 5 in a 5:4:1 ratio (Scheme 1). Irradiation of 1 in MeOH gives a 3:2 mixture of 5- and 6-methoxy-2,2-dimethylthian-4-ones 6 and 7 . Irradiation in CD3OD affords the same (deuterated) adducts with the CD3O and D groups trans to each other, results compatible with cis-addition of MeOH to a trans -configurated ground-state enone. Irradiation of the same enone in furan/MeOH 1:1 gives only the furan cycloadducts 3–5 and no MeOH adducts, suggesting that furan interacts with the (excited) triplet enone before the deactivation of this species to a ground-state (E)-cyclohexenone, which then reacts with MeOH. On irradiation in furan, the corresponding five-membered thiaenone, 2,2-dimethylthiophen-3(2H)-one ( 2 ) affords only one, cis-fused, [4 + 2] cycloadduct with ‘exo’-configuration, i.e. 8 , and 2 does not undergo solvent addition but rather cyclodimerization (→ 9 ) on irradiation in MeOH (Scheme 1).  相似文献   

9.
An expeditious preparation of the 6‐exo‐hydroxybicyclo[2.2.2]octan‐2‐one ethylene dithioacetal 2b , a key intermediate in the synthesis of (+)‐13‐stemarene ( 4 ) and (+)‐18‐deoxystemarin ( 5 ) is described. Compound 2b was obtained as the major product by equilibrating the endo rich mixture of 6‐hydroxybicyclo[2.2.2]octan‐2‐one ethylene dithioacetals 2 with TsOH in benzene at reflux, easily available from the corresponding hydroxy ketones 9 . The model experiments which preceeded the above transformation, not previously described in the literature, are also presented.  相似文献   

10.
The photochemical reactions of 2‐acylphenyl methacrylates (= 2‐acylphenyl 2‐methylprop‐2‐enoates) 1 were investigated. Irradiation of 2‐acylphenyl methacrylates 1a – d in MeCN gave the tricyclic lactones 2a – d in good yields, together with a small amount of O CO bond cleavage product, the 2‐acylphenols 3a – d (Scheme 2, Table). The formation of the tricyclic lactones 2 probably follows a mechanism involving a 1,7‐diradical through ζ‐H abstraction (1,8‐H transfer) by the excited carbonyl O‐atom (Scheme 3). Irradiation of 2‐acylphenyl tiglate (= 2‐acylphenyl (2E)‐2‐methylbut‐2‐enoate) 1e and 2‐acylphenyl methacrylates 1g – i , substituted by a MeO group (δ‐H) at the 3,5‐positions of the phenyl group, also gave the tricyclic lactones 2e and 2g – i , but in low yields. On the other hand, no H‐abstraction products were observed on irridation of 2‐(ethoxycarbonyl)phenyl methacrylate 1f , of 2‐acylphenyl methacrylate 1j which is substituted by a Me group (γ‐H) at the 3,5‐positions of the phenyl group, and of 1k with an OH group at the 3‐position of the phenyl group.  相似文献   

11.
A convenient sequence for the preparation of 3‐alkylidene‐2,3‐dihydro‐1H‐isoindol‐1‐imine derivatives 6 has been developed. Thus, 2‐(1‐azidoalkyl)benzonitriles 2 , readily accessible from 2‐alkylbenzonitriles, are allowed to react with NaH in DMF at 0° to room temperature to generate [1‐(2‐cyanophenyl)alkylidene]aminide intermediates 3 , of which cyclization and the subsequent rearrangement, followed by alkylation with alkyl halides, affords 2‐substituted 1‐alkylidene‐2,3‐dihydro‐1H‐isoindol‐2‐imines 6 in generally moderate yields.  相似文献   

12.
Selected 5‐substituted derivatives 4 of 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one were treated with propane‐1,3‐dithiol under various conditions. The unprotected hydroxy ketones underwent cyclization during the dithiol addition and gave the corresponding 3‐(diethoxymethyl)‐2‐oxa‐6,10‐dithiaspiro[4.5]decan‐3‐ols 5 in 80–90% yield as the only products (Scheme 3 and Table 1). These products can be regarded as partly modified carbohydrates in the furanose form. When the benzyl‐protected analogues 10‐Bn of the 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one derivatives were treated with the same dithiol, however, no cyclization occurred; instead the corresponding 3‐{2‐[(benzyloxy)methyl]‐1,3‐dithian‐2‐yl}‐1,1‐diethoxypropan‐2‐one derivatives 11‐Bn were formed in good yield (up to 99%; Table 4). These 1,3‐dithianes were and are in the process of being converted to a number of new carbohydrate analogues, and here are reported high‐yield syntheses of functionalized molecules 17 belonging to the 5,5‐diethoxy‐1,4‐dihydroxypentan‐2‐one family of compounds (Table 7), via 15‐Bn (Table 5) and 16‐Bn (Table 6 and Scheme 8).  相似文献   

13.
The title cyclohexenone 1d undergoes photodimerization selectively at the exocyclic C?C bond to give a 1 : 1 mixture of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes 6 and 7 . On irradiation in the presence of 2,3‐dimethylbuta‐1,3‐diene, 1d affords bicyclo[8.4.0]tetradeca‐1,2,3,7‐tetraen‐11‐one 9 . This – formal – (6+4)‐cycloadduct undergoes quantitative isomerization to 3‐cycloheptadienyl‐2,5,5‐trimethylcyclohex‐2‐enone 11 on treatment with basic silica gel.  相似文献   

14.
2‐Cycloheptatrienyl‐3‐(2‐furyl)benzothiophenes, which are prepared by Stille coupling reaction of 2‐cyclo‐heptatrienyl‐3‐bromobenzothiophene with the 5‐substituted 2‐trimethylstannylfurans, react with triphenylmethyl tetrafluoroborate to give the corresponding azuleno[1,2‐b]benzothiophenic enones in excellent yields.  相似文献   

15.
Cyclohex-2-enones 1a–1c undergo photocycloaddition to tetramethoxyethylene in benzene to afford 1-oxa-spiro[3.5]non-5-enes 3 in very good yields. In MeCN as solvent, higher relative amounts of bicyclo[4.2.0]octan-2-ones 4 are formed. Results from similar experiments with the same enones and 2,3-dimethylbut-2-ene or 1,1-dimethoxyethene indicate that the driving force for oxetane formation is a sufficiently large difference in redox potentials between Ered of the enone and Eox of the alkene. A mechanism is proposed for cycloalk-2-enone + alkene photocycloadditions wherein the cyclobutane adducts arise from an exciplex intermediate and the oxetanes from a subsequently formed contact ion-pair.  相似文献   

16.
The 2H‐1‐benzo/naphthopyran‐2‐one‐4‐yl (un)substituted phenyl‐1,3,4‐oxadiazoles has been synthesized by the oxidative cyclization of benzoic acid hydrazides formed in situ by the condensation of the respective 2H‐1‐benzo/naphthopyran‐2‐one‐4‐carboxaldehyde and (un)substituted monobenzoyl hydrazide in moderate yields. Also, spiro[indoline‐thiozolidine]‐2,4′‐diones has been syhthesized in a similar way from 3‐phenyl‐spiro[3H‐indoline‐3,2′‐thiozolidine]‐2,4′‐(1 H)dione monohydrazide and (un)substituted benzaldehydes.  相似文献   

17.
The intermolecular α‐allylation of enals and enones occurs by the condensation of variously substituted allenamides with allylic alcohols. Cooperative catalysis by [Au(ItBu)NTf2] and AgNTf2 enables the synthesis of a range of densely functionalized α‐allylated enals, enones, and acyl silanes in good yield under mild reaction conditions. DFT calculations support the role of an α‐gold(I) enal/enone as the active nucleophilic species.  相似文献   

18.
The intramolecular cyclization of 2‐acylphenylacetonitriles 1 under strongly acidic conditions easily affords 1‐substituted 2H‐isoquinolin‐3‐ones 2 in excellent yields.  相似文献   

19.
The enantioselective synthesis of highly functionalized chiral cyclopent‐2‐enones by the reaction of alkynyl malonate esters with arylboronic acids is described. These desymmetrizing arylative cyclizations are catalyzed by a chiral phosphinooxazoline/nickel complex, and cyclization is enabled by the reversible E/Z isomerization of alkenylnickel species. The general methodology is also applicable to the synthesis of 1,6‐dihydropyridin‐3(2H)‐ones.  相似文献   

20.
Mixtures of [{PCy2(o‐biphenyl)}AuCl] and AgSbF6 catalyze the tandem cycloaddition/hydroarylation of 7‐aryl‐1,6‐enynes with electron‐rich arenes to form 6,6‐diarylbicyclo[3.2.0]heptanes in good yield under mild conditions. Experimental observations point to a mechanism involving gold‐catalyzed cycloaddition followed by silver‐catalyzed hydroarylation of a bicyclo[3.2.0]hept‐1(7)‐ene intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号