首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyaddition of bis(4-mercaptophenyl) sulfide ( BMPS ) with m-phenylenebis(2-oxazoline) ( MPBO ) proceeded very smoothly in the mixtures of aprotic ploar solvents such as N-methyl-2-pyrrolidone ( NMP ) with water to produce the corresponding poly(amide–sulfide) with high molecular weights at 90°C under nitrogen. The reaction of BMPS with MPBO , p-phenylenebis(2-oxazoline), and 1,4-butylenebis(2-oxazoline) was also examined in water under the same conditions, and it was found that the reaction proceeds successfully to give the corresponding poly(amide–sulfide)s with high molecular weights. These results mean that water along as well as the mixed solvents of aprotic polar solvents such as NMP with water can be uses as suitable reaction media for the polyaddition of bis(oxazolines) with dithiol to synthesize poly(amide—sulfide)s with high molecular weights. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2711–2717, 1997  相似文献   

2.
New 1,4‐naphthyl and 2,6‐naphthyl‐containing polyarylates having inherent viscosities up to 1.28 dL/g were synthesized by the high‐temperature solution polycondensation from the acid chloride of 1,4‐bis(4‐carboxyphenoxy)naphthyl or 2,6‐bis(4‐carboxyphenoxy)naphthyl and various bisphenols. Most of the resulting polyarylates showed amorphous characteristics and were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), o‐chlorophenol, and chloroform. Transparent, flexible, and colorless films of these polymers could be cast from the DMAc solutions. Their cast films had tensile strengths ranging from 54.9 to 84.2 MPa, elongations at break from 5.3% to 19.0%, and initial modulus from 2.0 to 2.8 GPa. These polymers had glass transition temperatures in the range of 172–280°C and began to lose weight around 400°C, with 10% weight loss being recorded at about 450°C in air. Dynamic mechanical analysis (DMA) reveals that the polyarylates containing isopropylidene linkages have three transitions on the temperature scale between −100 and 300°C. However, only two transitions were observed in the other polyarylates without isoproylidene linkage. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 645–652, 1999  相似文献   

3.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

4.
A bis(ether amine) containing the ortho‐substituted phenylene unit and pendant tert‐butyl group, 1,2‐bis(4‐aminophenoxy)‐4‐tert‐butylbenzene, was synthesized and used as a monomer to prepare polyimides with six commercial dianhydrides via a conventional two‐stage procedure. The intermediate poly(amic acid)s had inherent viscosities of 0.78–1.44 dL/g, and most of them could be thermally converted into transparent, flexible, and tough polyimide films. The inherent viscosities of the resulting polyimides were in the range of 0.46–0.87 dL/g. All polyimides were noncrystalline, and most of them showed excellent solubility in polar organic solvents. The glass‐transition temperatures of these polyimides were in the range of 222–259 °C in differential scanning calorimetry and 212–282 °C in thermomechanicl analysis. These polyimides showed no appreciable decomposition up to 500 °C in thermogravimetric analysis in air or nitrogen. A comparative study of the properties with the corresponding polyimides without pendant tert‐butyl groups derived from 1,2‐bis(4‐aminophenoxy)benzene is also presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1551–1559, 2000  相似文献   

5.
A series of novel polyamide‐imides III containing 2,6‐bis(phenoxy)naphthalene units were synthesized by 2,6‐bis(4‐aminophenoxy)naphthalene and various bis(trimellitimide)s in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents through direct polycondensation. The polymers were obtained in quantitative yield with inherent viscosities up to 1.53 dL/g. Most of the polymers showed good solubility in NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide and could be solution‐cast into transparent, flexible, and tough films. The films had tensile strengths of 84–111 MPa, elongations at break of 8–33%, and initial moduli of 2.2–2.8 GPa. Wide‐angle X‐ray diffraction revealed that most polymers III were amorphous. The glass‐transition temperatures of some of the polymers could be determined by differential scanning calorimetry traces, recorded at 247–290 °C. The polyamide‐imides exhibited excellent thermal stabilities and had 10% weight loss at temperatures in the range of 501–575 °C under nitrogen atmosphere. They left more than 57% residue even at 800 °C in nitrogen. A comparative study of some corresponding polyamide‐imides is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2591–2601, 2001  相似文献   

6.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

7.
A series of new polyamides containing both sulfone and oxyethylene moieties in the polymer chain was prepared by the direct polycondensation of the diamine monomer 2,2‐bis[4‐[2‐(4‐aminophenoxy)ethoxy]phenyl]sulfone (BAEPS) and various aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with inherent viscosities of 0.30–0.60 dl/g and identified by elemental analysis, and infrared and nuclear magnetic resonance spectra. Most of the polymers were readily dissolved in polar solvents such as NMP, dimethylsulfoxide, N,N‐dimethylacetamide, N,N‐dimethylformamide and m‐cresol at room temperature. Polymers containing rigid and symmetric p‐phenylene, naphthalene and p‐biphenylene moieties revealed a crystalline nature and showed no solubility in organic solvents. These polyamides had 10% weight loss temperatures ranging between 423 and 465 °C in nitrogen atmosphere and glass transition temperatures between 170 and 305 °C. The polymers with crystallinity nature exhibited melting endotherms (Tm) below 386 °C in differential scanning calorimetry trace. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Addition reaction of (3-methyl-3-oxetanyl)methyl acetate (MOMA) with bis(4-mercaptophenyl) sulfide (BMPS) was examined in certain organic solvents. When the reaction of MOMA with BMPS was performed without any catalyst in hexamethylphosphoric triamide (HMPA) and N-methyl-2-pyrrolidone (NMP) at 130°C for 24 h, conversions of the corresponding adduct were 96 and 36%, respectively, which was confirmed by 1H-NMR spectra. On the other hand, when the reaction was carried out using tetraphenylphosphonium bromide (TPPB) as a catalyst under the same conditions, conversions of the adduct were 96 and 81% in HMPA and NMP, respectively. This result shows that although the addition reaction of oxetane compound with aromatic dithiol proceeds without any catalyst in HMPA, the reaction was strongly enhanced by adding TPPB in NMP. On the basis of the above results, polyadditions of bis((3-methyl-3-oxetanyl)methyl) terephthalate (BMOT) and bis((3-ethyl-3-oxetanyl)methyl) terephthalate with BMPS were performed using TPPB as the catalyst in NMP at 130°C for 24 h. As a result, the corresponding high molecular weight polymers 1 (Mn = 22,400) and 2 (Mn = 12,800) with pendant primary hydroxyl groups were obtained in 83 and 89% yields without any gel products, respectively. Furthermore, a low molecular weight oligomer was obtained from the polyaddition of BMOT with aliphatic dithiol, bis(mercaptomethyl)benzene, under the same reaction conditions. The catalytic activity on the polyaddition of BMOT with BMPS was also examined, and it was found that thermally stable TPPB and crown ether complexes at the reaction temperature (130°C) have higher catalytic activity than tetrabutylammonium bromide and tetrabutylphosphonium bromide to produce polymer 1 with high molecular weight. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2873–2880, 1998  相似文献   

9.
A series of fluorine‐containing aromatic homopolyacetals and copolyacetals with a wide range of unit ratios were synthesized by the solution polycondensation of 2,2‐bis(4‐hydroxyphenyl)‐1,1,1,3,3,3‐hexafluoropropane (bisphenol AF), 2,2‐bis(4‐hydroxyphenyl)propane (bisphenol A), or both with 2‐(trifluoromethyl)benzal chloride, and the effect of fluorine substitution on the properties of these polymers is discussed in relation to the fluorine contents. High molecular weight polyacetals with reduced viscosities of 0.43–0.97 dL/g were obtained in high yields with potassium hydroxide as a base, 18‐crown 6‐ether as a catalyst, and N‐methyl‐2‐pyrrolidinone as a medium at 100 °C for 3 h. Regardless of the fluorine contents, these polymers all were highly soluble in various solvents, including benzene, chloroform, ethyl acetate, and tetrahydrofuran, and afforded colorless, transparent, and tough films by solution casting. The temperatures of 5% weight loss and 10% weight loss under nitrogen both increased significantly and monotonously with increasing fluorine content, whereas the glass‐transition temperatures were scarcely affected by fluorine substitution. The dielectric constant at 1 MHz of the bisphenol AF‐based homopolyacetal was 2.43, which was remarkably lower than the value of the bisphenol A‐based homopolyacetal, 2.68. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1873–1879, 2000  相似文献   

10.
New aromatic tetracarboxylic dianhydride, having isopropylidene and bromo‐substituted arylene ether structure 3,3′,5,5′‐tetrabromo‐2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride, was synthesized by the reaction of 4‐nitrophthalonitrile with 3,3′,5,5′‐tetrabromobisphenol A, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). The novel aromatic polyetherimides having inherent viscosities up to 1.04 dL g−1 were obtained by either a one‐step or a conventional two‐step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), pyridine, and even in less polar solvents like chloroform and tetrahydrofuran (THF). These aromatic polyimides had glass transition temperatures in the range of 256–303°C, depending on the nature of the diamine moiety. Thermogravimetric analysis (TGA) showed that all polymers were stable, with 10% weight loss recorded above 470°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1673–1680, 1999  相似文献   

11.
A new dicarboxylic acid containing a diphenylmethylene linkage, bis[4‐(4‐carboxyphenoxy)phenyl]diphenylmethane (BCAPD), was prepared from bis(4‐hydroxphenyl)diphenylmethane and p‐fluorobenzonitrile via an aromatic nucleophilic substitution reaction followed by hydrolysis. A series of novel polyamides were prepared by the direct polycondensation of BCAPD and various aromatic diamines. The polymers were produced with moderate to high inherent viscosities of 0.80–0.85 dL g?1. Nearly all the polymers were readily soluble in polar solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide, in less polar solvents such as pyridine and cyclohexanone, and in tetrahydrofuran. All the polymers were amorphous, and the polyamide films had a tensile strength and a tensile modulus greater than 80 MPa and 2.0 GPa, respectively. These polyamides had glass‐transition temperatures between 249 and 274 °C, and their temperatures at a 10% weight loss were 477–538 and 483–540 °C in nitrogen and air atmospheres, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1156–1161, 2001  相似文献   

12.
Diamine 3,3‐bis[4‐(4‐aminophenoxy)‐3‐methylphenyl]phthalide (BAMP) was derived from the o‐cresolphthalein, and then it was polycondensated with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides (PAs) and polyimides (PIs), respectively. PAs have inherent viscosities of 0.78–2.24 dL/g. Most of the PAs are readily soluble in a variety of solvents such as DMF, DMAc, and NMP and afforded transparent and tough films from DMAc solutions. The cast films have tensile strengths of 75–113 MPa as well as initial moduli of 1.71–2.97 GPa. These PAs have glass transition temperatures (Tgs) in the range of 242–325°C, 10% weight loss temperatures occur up to 473°C, and char yields are between 57 and 64% at 800°C in nitrogen. PIs were first synthesized to form polyamic acids (PAAs) by a two‐stage procedure that included a ring‐opening reaction, followed by thermal or chemical conversion to polyimides. Inherent viscosities of PAAs are between 0.71 and 1.63 dL/g. Most of the PIs obtained through the chemical cyclodehydration procedure are soluble in NMP, o‐chlorophenol, m‐cresol, etc., and they have inherent viscosities of 0.58–1.32 dL/g. Tgs of these PIs are in the range of 270–305°C and show 10% weight loss temperatures up to 477°C. PIs obtained through the thermal cyclodehydration procedure have tensile strengths of 72–142 MPa, elongations at break of 8–19%, and initial moduli of 1.80–2.72 GPa. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 455–464, 1999  相似文献   

13.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

14.
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001  相似文献   

15.
A novel structurally asymmetric bis(ether amine) monomer containing trifluoromethyl groups, 1,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 1,7‐dihydroxynaphthalene in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal or chemical imidization method. The intermediate poly(amic acid)s had inherent viscosities between 0.93 and 1.93 dL/g. Most of the polyimides obtained from both routes were readily soluble in many organic solvents such as NMP and N,N‐dimethylacetamide (DMAc). All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.29–0.69%, low dielectric constants of 2.81–3.23 at 10 kHz, and an ultraviolet‐visible absorption cutoff wavelength at 358–423 nm. The glass‐transition temperatures (Tgs) (by DSC) and softening temperatures (by thermomechanical analysis) of the polyimides were recorded in the range of 222–271 °C and 210–266 °C, respectively. Decomposition temperatures for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. For a comparative study, some properties of the present polyimides will be compared with those of structurally related ones derived from 1,7‐bis(4‐aminophenoxy)naphthalene and 1,5‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1756–1770, 2009  相似文献   

16.
A new dicarboxylic acid monomer, 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane, bearing a pendent tert‐butylcyclohexylidene group was prepared in three steps from 4‐tert‐butylcyclohexanone. The monomer was reacted with various diamines to produce a series of new polyamides with triphenyl phosphite and pyridine as condensing agents. These polyamides were produced with inherent viscosities of 0.74 to 1.02 dL g−1. All the polymers were characterized by X‐ray diffraction that revealed this amorphous nature. These polymers exhibited excellent solubility in a variety of solvents. Almost all the polymers could be dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and even in tetrahydrofuran and cyclohexanone. These polymers showed glass‐transition temperatures between 223 and 256 °C and decomposition temperatures at 10% weight loss ranging from 468 to 491 °C and 469 to 498 °C in nitrogen and air atmospheres, respectively. Transparent, tough, and flexible films of these polymers were cast from the DMAc solutions. These polymer films had tensile strengths ranging from 76 to 99 MPa, elongations at break from 7 to 19%, and initial moduli from 2.1 to 2.7 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 797–803, 2000  相似文献   

17.
A novel, fluorinated diamine monomer, 2,5‐bis(4‐amino‐2‐ trifluoromethylphenoxy)‐tert‐butylbenzene ( II ) was synthesized through the nucleophilic substitution reaction of tert‐butylhydroquinone (t‐BHQ) and 2‐chloro‐5‐nitrobenzotrifluoride in the presence of potassium carbonate to yield the intermediate dinitro compound I , followed by catalytic reduction with hydrazine and Pd/C to afford diamine II . A series of fluorinated polyimides V were prepared from II with various aromatic dianhydrides ( III a–f ) via the thermal imidization of poly(amic acid). Most of V a–f could be soluble in amide‐type solvents and even in less polar solvents. These polyimide films showed tensile strengths up to 106 MPa, elongation at break up to 21%, and initial modulus up to 2.1 GPa. The glass‐transition temperature of V was recorded at 245–304 °C, the 10% weight loss temperatures were above 488 °C, and left more than 41% residue even at 800 °C in nitrogen. Low dielectric constants, low moisture absorptions, and higher and light‐colored transmittances were also observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5424–5438, 2004  相似文献   

18.
Improved reaction conditions for the preparation of poly(p‐phenylene sulfide) (PPS) directly from bis(4‐bromophenyl) disulfide (BBD) have been established. Heating BBD with magnesium metal afforded only a low molecular weight polymer. PPS with a melting temperature around 280 °C was obtained from BBD in the presence of sodium carbonate or zinc metal. The best results were obtained with the addition of a catalytic amount of KI to the zinc–BBD mixture. Polymers prepared by the above methods are semicrystalline and dissolve in 1‐chloronaphthalene and have properties comparable to commercial PPS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 900–904, 2006  相似文献   

19.
A dicarboxylic acid {1,1‐bis[4‐(4‐trimellitimidophenoxy)phenyl]‐1‐phenylethane ( II )} bearing two performed imide rings was prepared from the condensation of 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane and trimellitic anhydride in a 1/2 molar ratio. A novel family of poly(amide‐imide)s with inherent viscosities of 0.83–1.51 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid II with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. Because the 1,1,1‐triphenylethane group of II was unsymmetrical, most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N‐dimethylacetamide. All the soluble poly(amide‐imide)s afforded tough, transparent, and flexible films, which had tensile strengths ranging from 88 to 102 MPa, elongations at break from 6 to 11%, and initial moduli from 2.23 to 2.71 GPa. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures from 250 to 287 °C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses from 501 to 534 °C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 775–787, 2001  相似文献   

20.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号