首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In the title compound, 4‐amino‐3‐propynyl‐1‐(β‐d ‐ribofur­anosyl)‐1H‐pyrazolo[3,4‐d]pyrimidine methanol solvate, C13H15N5O4·CH3OH, the torsion angle of the N‐glycosylic bond is between anti and high‐anti [χ = −101.8 (5)°]. The ribofuranose moiety adopts the C3′‐endo (3T2) sugar conformation (N‐type) and the conformation at the exocyclic C—C bond is +sc (gauche, gauche). The propynyl group is out of the plane of the nucleobase and is bent. The compound forms a three‐dimensional network which is stabilized by several hydrogen bonds (O—H·O and O—H·N). The nucleobases are stacked head‐to‐tail. The methanol solvent mol­ecule forms hydrogen bonds with both the nucleobase and the sugar moiety.  相似文献   

2.
In the title compound, 4‐amino‐1‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐6‐methyl­sulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C11H16N5O3S, the conformation of the glycosidic bond is between anti and high anti. The 2′‐deoxy­ribofuranosyl moiety adopts the C3′‐exo–C4′‐endo conformation (3T4, S‐type sugar pucker), and the conformation at the exocyclic C—C bond is +sc (+gauche). The exocyclic 6‐amine group and the 2‐methyl­sulfanyl group lie on different sides of the heterocyclic ring system. The mol­ecules form a three‐dimensional hydrogen‐bonded network that is stabilized by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

3.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

4.
The synthesis of the 7‐halogenated derivatives 1b (7‐bromo) and 1c (7‐iodo) of 7‐deaza‐2′‐deoxyxanthosine ( 1a ) is described. A partial Br→I exchange was observed when the demethylation of 6‐methoxy precursor compound 4b was performed with Me3SiCl/NaI. This reaction is circumvented by the nucleophilic displacement of the MeO group under strong alkaline conditions. The halogenated 7‐deaza‐2′‐deoxyxanthosine derivatives 1b , c show a decreased S‐conformer population of the sugar moiety compared to the nonhalogenated 1a . They are expected to form stronger triplexes when they replace 1a in the 1 ?dA?dT base triplet.  相似文献   

5.
In the title compound, 2‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuran­osyl)‐3,7‐dihydro­pyrrolo[2,3‐d]pyrimidin‐4‐one, C11H14N4O4, the N‐glycosylic bond torsion angle, χ, is anti [−106.5 (3)°]. The 2′‐deoxy­ribofuran­osyl moiety adopts the 3T4 (N‐type) conformation, with P = 39.1° and τm = 40.3°. The conformation around the exocyclic C—C bond is ap (trans), with a torsion angle, γ, of −173.8 (3)°. The nucleoside forms a hydrogen‐bonded network, leading to a close‐packed multiple‐layer structure with a head‐to‐head arrangement of the bases. The nucleobase interplanar O=C—C⋯NH2 distance is 3.441 (1) Å.  相似文献   

6.
Oligonucleotides incorporating 7‐deaza‐2′‐deoxyxanthosine ( 3 ) and 2′‐deoxyxanthosine ( 1 ) were prepared by solid‐phase synthesis using the phosphoramidites 6 – 9 and 16 which were protected with allyl, diphenylcarbamoyl, or 2‐(4‐nitrophenyl)ethyl groups. Among the various groups, only the 2‐(4‐nitrophenyl)ethyl group was applicable to 7‐deazaxanthine protection being removed with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) by β‐elimination, while the deprotection of the allyl residue with Pd0 catalyst or the diphenylcarbamoyl group with ammonia failed. Contrarily, the allyl group was found to be an excellent protecting group for 2′‐deoxyxanthosine ( 1 ). The base pairing of nucleoside 3 with the four canonical DNA constituents as well as with 3‐bromo‐1‐(2‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐1H‐pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine ( 4 ) within the 12‐mer duplexes was studied, showing that 7‐deaza‐2′‐deoxyxanthosine ( 3 ) has the same universal base‐pairing properties as 2′‐deoxyxanthosine ( 1 ). Contrary to the latter, it is extremely stable at the N‐glycosylic bond, while compound 1 is easily hydrolyzed under slightly acidic conditions. Due to the pKa values 5.7 ( 1 ) and 6.7 ( 3 ), both compounds form monoanions under neutral conditions (95% for 1 ; 65% for 3 ). Although both compounds form monoanions at pH 7.0, pH‐dependent Tm measurements showed that the base‐pair stability of 7‐deaza‐2′‐deoxyxanthosine ( 3 ) with dT is pH‐independent. This indicates that the 2‐oxo group is not involved in base‐pair formation.  相似文献   

7.
The title compound {systematic name: 4‐amino‐5‐cyclopropyl‐7‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine}, C14H18N4O3, exhibits an anti glycosylic bond conformation, with the torsion angle χ = −108.7 (2)°. The furanose group shows a twisted C1′‐exo sugar pucker (S‐type), with P = 120.0 (2)° and τm = 40.4 (1)°. The orientation of the exocyclic C4′—C5′ bond is ‐ap (trans), with the torsion angle γ = −167.1 (2)°. The cyclopropyl substituent points away from the nucleobase (anti orientation). Within the three‐dimensional extended crystal structure, the individual molecules are stacked and arranged into layers, which are highly ordered and stabilized by hydrogen bonding. The O atom of the exocyclic 5′‐hydroxy group of the sugar residue acts as an acceptor, forming a bifurcated hydrogen bond to the amino groups of two different neighbouring molecules. By this means, four neighbouring molecules form a rhomboidal arrangement of two bifurcated hydrogen bonds involving two amino groups and two O5′ atoms of the sugar residues.  相似文献   

8.
The synthesis of new members of the aristeromycin and neplaoncin A families of carbocyclic nucleosides possessing the 1H‐pyrazolo[3,4‐d]pyrimidine ring is reported. For this purpose, an adapted route to 4‐amino‐1H‐pyrazolo[3,4‐d]pyrimidine is described.  相似文献   

9.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3,7‐dihydro‐4H‐pyrrolo[2,3‐d]pyrimidin‐4‐one], C11H13N3O4, represents an acid‐stable derivative of 2′‐deoxyinosine. It exhibits an anti glycosylic bond conformation, with a χ torsion angle of 113.30 (15)°. The furanose moiety adopts an S‐type sugar pucker 4T3, with P = 221.8 (1)° and τm = 40.4 (1)°. The conformation at the exocyclic C4′—C5′ bond of the furanose ring is ap (trans), with γ = 167.14 (10)°. The extended structure forms a three‐dimensional hydrogen‐bond network involving O—H...O, N—H...O and C—H...O hydrogen bonds. The title compound forms an uncommon hydrogen bond between a CH group of the pyrrole system and the ring O atom of the sugar moiety of a neighbouring molecule.  相似文献   

10.
In the monohydrate of 2‐amino‐8‐(2‐deoxy‐α‐d ‐erythro‐pento­furan­osyl)‐8H‐imidazo­[1,2‐a]­[1,3,5]­triazin‐4‐one, C10H13N5O4·H2O, denoted (I) or αZd, the conformation of the N‐gly­cosyl­ic bond is in the high‐anti range [χ = 87.5 (3)°]. The 2′‐deoxy­ribo­furan­ose moiety adopts a C2′‐endo,C3′‐exo(2′T3′) sugar puckering (S‐type sugar) and the conformation at the C4′—C5′ bond is ?sc (trans).  相似文献   

11.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

12.
13.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

14.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

15.
2‐Ethyl‐2‐oxazoline (EOZO) was polymerized using two different photocationic initiators: a combination of bis{(4‐diphenylsulfonium)phenyl}sulfide bis{hexafluoroantimonate} and (4‐phenyl sulfide)phenyl diphenylsulfonium hexafluoroantimonate (Cyracure UVI® 6974) and (η5‐2,4‐cyclopentadien‐1‐yl)‐[η6‐(1‐methylethyl)benzene]iron hexafluorophosphate (Irgacure® 261). The experimental data is consistent with the premise that in the presence of Cyracure UVI® 6974 the initiation proceeds via a Brønstedt acid. In the second case the generation of oxazolinium growing species is intermediated by a complex derived from the initial ferrocenium salt.  相似文献   

16.
A facile route for the synthesis of 2‐substituted biquinazolinones incorporating a chiral center into one of their lateral appendage, via condensation of 4H‐3,1‐benzoxazin‐4‐one with 3‐amino‐2S‐substituted‐quinazolin‐4‐ones, is described. The methodology is straightforward and does not require chromatographic purification at any stage. The products are obtained in good yields as mixture of diastereoisomers, which can be enriched with the major diastereoisomer by simple recrystallization. The functional groups in the lateral chain can be easily modified allowing the synthesis of a variety of 3,3′‐biquinazoline‐4,4′‐diones. The synthesis of symmetrically 2,2′ chirally disubstituted biquinazolinones via acylation/dehydration sequence of bisanthraniloyl hydrazine is also described.  相似文献   

17.
Novel silver‐mediated dA?dC, dA*?dC, and dA*?dG base pairs were formed in a natural DNA double helix environment (dA* denotes 7‐deaza‐dA, 7‐deaza‐7‐iodo‐dA, and 7‐cyclopropyl‐7‐deaza‐dA). 7‐Deazapurine nucleosides enforce silver ion binding and direct metal‐mediated base pair formation to their Watson–Crick face. New phosphoramidites were prepared from 7‐deaza‐dA, 7‐deaza‐7‐iodo‐dA, and 7‐cyclopropyl‐7‐deaza‐dA, which contain labile isobutyryl protecting groups. Solid‐phase synthesis furnished oligonucleotides that contain mismatches in near central positions. Increased thermal stabilities (higher Tm values) were observed for oligonucleotide duplexes with non‐canonical dA*?dC and dA?dC pairs in the presence of silver ions. The stability of the silver‐mediated base pairs was pH dependent. Silver ion binding was not observed for the dA?dG mismatch but took place when mismatches were formed between 7‐deazaadenine and guanine. The specific binding of silver ions was confirmed by stoichiometric UV titration experiments, which proved that one silver ion is captured by one mismatch. The stability increase of canonical DNA mismatches might have an impact on cellular DNA repair.  相似文献   

18.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

19.
3‐(2,2′‐Bipyridyl)‐substituted iminocoumarin molecules (compounds 1 and 2 ) exhibit dual fluorescence. Each molecule has one electron donor and two electron acceptors that are in conjugation, which leads to fluorescence from two independent charge transfer (CT) states. To account for the dual fluorescence, we subscribe to a kinetic model in which both CT states form after rapid decays from the directly accessed S1 and S2 excited states. Due to the slow internal conversion from S2 to S1, or more likely the slow interconversion between the two subsequently formed CT states, dual emission is allowed to occur. This hypothesis is supported by the following evidence: 1) the emission at short and long ends of the spectrum originates from two different excitation spectra, which eliminates the possibility that dual emission occurs after an adiabatic reaction at the S1 level. 2) The fluorescence quantum yield of compound 2 grows with increasing excitation wavelength, which indicates that the high‐energy excitation elevates the molecule to a weakly emissive state that does not internally convert to the low‐energy, highly emissive state. The intensity of the two emission bands of 1 is tunable through the specific interactions between either of the two electron acceptors with another species, such as Zn2+ in the current demonstration. Therefore, the development of ratiometric fluorescent indicators based on the dual‐emitting iminocoumarin system is conceivable. Further fundamental studies on this series of compounds using time‐resolved spectroscopic techniques, and explorations of their applications will be carried out in the near future.  相似文献   

20.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号