首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In attempt to improve the properties of polyanhydrides based on aliphatic anhydrides, we synthesized novel polyanhydrides containing amide groups in the main chains. In this work, N,N′‐bis(L ‐alanine)‐sebacoylamide (BSAM) was prepared from natural amino acid and sebacic acid (SA) and characterized by IR and 1H NMR. In addition, polymers of PBSAM, P[1,6‐bis(P‐carboxyphenoxy) hexane (CPH)‐BSAM], and P(CPH‐SA), blends of P(CPH‐SA)/polylactide (PLA), P(CPH‐BSAM)/PLA were also prepared and characterized by IR, gel permeation chromatography, and differential scanning calorimetry. The hydrolytic degradation of polyanhydrides and their blends with PLA (number‐average molecular weight = 2.90 × 105) was evaluated in 0.1 M phosphate buffer pH 7.4 at 37 °C. The results indicate that the existence of amide, aromatic, and ester bonds in the main chain of polymers slows down the degradation rate, and the tendency becomes clearer with the increasing amount of them, and the copolymers and their blends with PLA possess excellent physical and mechanical properties. These can make them more widely used in drug delivery and nerve regeneration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4311–4317, 2004  相似文献   

2.
Near infrared spectroscopy (NIR) was used to characterize the nature of specific interactions in blends of lightly sulfonated polystyrene ionomers (M‐SPS where M = Zn+2, Mn+2, or Li+) and polycaprolactam (PA6). The assignments of the NIR overtone bands that arise due to the interactions between the cation of the ionomer, and the amide groups were made using spectra of model compounds. The relative populations of the different environments of the N? H groups were qualitatively determined by deconvoluting the NIR spectra into five absorbances representing hydrogen‐bonded N? H in crystalline and amorphous phases and an ion‐amide complex. The ion‐amide complex was specific for the blends. The interpolymer interactions were sensitive to composition and temperature, but qualitatively the behavior was the same for all three ionomer salts investigated. © 2008 Wiley Periodicals, Inc. JPolym Sci Part B: Polym Phys 46: 1602–1610, 2008  相似文献   

3.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

4.
When poly(N‐vinyl pyrrolidone‐co‐vinyl acetate) (PVP‐co‐PVAc) containing amide and ester groups were complexed with silver salts to form silver polymer electrolyte membranes, their separation performance of propylene/propane mixtures showed the high selectivity of propylene over propane of 55 and the high mixed gas permeance of 12 GPU (1 GPU = 1.0 × 10?6 cm3(STP) cm?2 s?1 cmHg?1). The separation performance strongly depends on the composition of the copolymer: the higher concentration of PVP in the copolymer, the better separation performance was achieved. These results suggest that the amide group is more effective in facilitated propylene transport than the ester group, primarily due to the stronger interaction of the silver ions with the amide than the ester oxygens, as demonstrated by FT‐IR and FT‐Raman spectroscopies. In‐situ FT‐IR spectra upon propylene sorption also demonstrate that the interaction strength of the silver ions with the ligands is arranged: amide > C?C > ester. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2263–2269, 2007  相似文献   

5.

A new anti‐static agent was synthesized from zinc oxide‐adipic acid‐polyethylene glycol and caprolactam by three‐step reactions. The antistatic agent (called poly(ether ester amide zinc oxide) or PEEAZ) was analyzed by IR and DSC. The results showed that zinc oxide existed in the main chain of PEEAZ. The glass temperature and melt temperature of poly(ether ester amide zinc oxide) (referred to as PEEAZ in the following) decreased with increasing poly(ether ester zinc oxide) increasing in PEEAZ. Antistatic PA6 fiber was obtained by adding PEEAZ 2–8% (wt/wt) to PA6 during blend spinning. The specific resistance and the static half‐value period of PA6 fiber was less than 109Ω · cm and 60 sec, respectively. Excellent antistatic property remained after being washed 30 times.  相似文献   

6.
The temperature‐dependent desorption behavior of surfactants in linear low‐density polyethylene (LLDPE) blend films was studied with Fourier transform infrared spectroscopy at 25, 40, and 50 °C. The LLDPE/low‐density polyethylene blend was 70/30. Three different specimens (labeled II, III, and IV) were prepared with various compositions of the surfactant, sorbitan palmitate (SPAN‐40), and the migration controller, poly(ethylene acrylic acid) (EAA). The calculated diffusion coefficients of SPAN‐40 in specimens II, III, and IV at 25, 40, and 50 °C varied from 9.6 × 10−12 to 17.4 × 10−12 cm2/s, from 5.5 × 10−12 to 11.0 × 10−12 cm2/s, and from 3.1 × 10−12 to 5.8 × 10−12 cm2/s, respectively. In addition, the activation energies of specimens II, III, and IV measured between 25 and 50 °C were 18.74, 19.42, and 20.14, respectively. Hence, the desorption rate of the surfactant increased with the temperature and decreased with an addition of EAA, but the activation energy increased with EAA. The diffusion kinetics, analyzed with a plot of the integrated intensity ratio as a function of time, log(It/I) versus log t, at 25, 40, and 50 °C obeyed Fickian diffusion behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 218–227, 2001  相似文献   

7.
Synthesis, properties, and optoelectronic device applications of four new bis‐[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline( Qx(EHP) )‐based donor‐acceptor conjugated copolymers are reported, in which the donors are thiophene( T ), dithiophene( DT ), dioctylfluorene( FO ), and didecyloxyphenylene( OC10 ). The optical band gaps (Eg) of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) estimated from the onset absorption are 1.57, 1.65, 1.77, and 1.92 eV, respectively. The smallest Eg of PThQx(EHP) among the four copolymers is attributed to the balanced donor/acceptor ratio and backbone coplanarity, leading to a strong intramolecular charge transfer. The hole mobilities obtained from the thin film transistor (TFT) devices of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) are 2.52 × 10?4, 4.50 × 10?3, 4.72 × 10?5, and 9.31 × 10?4 cm2 V?1 s?1, respectively, with the on‐off ratios of 2.00 × 104, 1.89 × 103, 4.07 × 103, and 2.30 × 104. Polymer solar cell based on the polymer blends of PFODTQ(EHP) , PThQx(EHP) , POC10DTQ(EHP) , and PDTQ(EHP) with [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) under illumination of AM1.5 (100 mW cm?2) solar simulator exhibit power conversion efficiencies of 1.75, 0.92, 0.79, and 0.43%, respectively. The donor/acceptor strength, molecular weight, miscibility, and energy level lead to the difference on the TFT or solar cell characteristics. The present study suggests that the prepared bis[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline donor‐acceptor conjugated copolymers would have promising applications on electronic device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 973–985, 2009  相似文献   

8.
Polyamide 12,T–polyamide‐6 (PA‐12,T–PA‐6) block copolymers were synthesized by anionic polymerization of caprolactam using a PA‐12,T macrocoinitiator (McI). PA‐12,T McI and its precursors are soluble in molten caprolactam allowing for both the McI step‐growth polymerization and anionic polymerization to be performed in one‐pot. It was found that the competing reaction rates of caprolactam ring‐opening polymerization and McI transamidation are both deterred by a common ion effect using CaCl2 and soluble materials were obtained using >1 mol % CaCl2. Without CaCl2, the reaction mixture solidifies in less than 30 s and produces crosslinked materials. To understand this effect, PA‐12,T McI reactions with caprolactam were performed with 1–10 mol % CaCl2, and polymer structures were characterized using 13C NMR and dilute solution viscometry. These data were then correlated with unique thermal properties and swelling behavior of the block copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

10.
Conducting poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends containing 10, 30, 50, 70, and 90 % wt/wt of polystyrene (PSt) were prepared by employing a two-step emulsion pathway. The bands characteristic of both polystyrene and POT/PMT are present in the IR spectra of POT–PSt and PMT–PSt blends. The UV-visible spectra of POT–PSt and PMT–PSt blends exhibit two bands around 313 and 610 nm, confirming that some amount of POT/PMT base is present in the blends. The EPR parameters such as line width and spin concentration reveal the presence of POT/PMT salt in the respective blends. The TGA, DTA, and DSC results suggest a higher thermal stability for the POT and PMT blends than that for the respective salts. The conductivity values of POT(70)–PSt(30) and POT(90)–PSt(10) blends are almost the same (1.1 × 10−2 and 1.3 × 10−2 S cm−1, respectively) and these values are very close to that of pure POT salt, suggesting that POT can be blended with up to 30% wt/wt of PSt to improve its mechanical properties without a significant drop in its conductivity. The conductivity values of PMT–PSt blends are lower than those of the corresponding POT–PSt blends by two to three orders of magnitude, indicating that POT is a better system than PMT to prepare blends by this method. The dielectric constant and tan δ values of the blends increase with the amount POT/PMT and are greater than that of polystyrene. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2291–2299, 1998  相似文献   

11.
TEM micrographs show that the PA grafts of PS‐g‐PA6 graft copolymers, which are obtained directly by extracting homo‐PA6 out from the homo‐PA6/PS‐g‐PA6 blends, are in the form of wormlike structure. The wormlike PA6 domains can shrink into droplets after annealing at 250 °C for 15 min. The diameter of the droplet determined by TEM and SAXS is in the range of 50–60 nm. This article reports on a unique crystallization behavior of the PA6 grafts in PS‐g‐PA6 graft copolymers. In a DSC cooling scan, PA6 grafts do not crystallize from the melt with a cooling rate of 10 °C/min. However, there is a cold crystallization peak around 65 °C in the subsequent heating scan. This cold crystallization phenomenon, which has not yet been reported in the literature till now, follows well the homogeneous nucleation mechanism and is depressed at relatively slow cooling rates (2 °C/min) or even completely eliminated after annealing within a specific temperature range. It may be caused by the slow diffusion or transport rate of the less flexible PA6 grafts to the crystal fronts when crystallization takes place around its glass transition temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 65–73, 2010  相似文献   

12.
A series of novel, fluorene‐based conjugated copolymers, poly[(9,9‐bis{propenyl}‐9H‐fluorene)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P1 ), poly[(9,9‐bis{carboxymethylsulfonyl‐propyl}fluorenyl‐2,7‐diyl)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P2 ) and poly[(9,9‐dihexylfluorene)‐co‐alt‐(9,9‐bis‐(6‐azidohexyl)fluorene)] ( P3 ), are synthesized by Suzuki coupling reactions and their electrochemical properties, in the form of films, are investigated using cyclic voltammetry. The results reveal that the polymer films exhibit electrochromic properties with a pseudo‐reversible redox behavior; transparent in the neutral state and dark violet in the oxidized state. Among the three polymers, P2 possesses the shortest response time and the highest coloration efficiency value. These polymers emit blue light with a band gap value of around 2.9 eV and have high fluorescent quantum yields. Their metal ion sensory abilities are also investigated by titrating them with a number of different transition metal ions; all of these polymers exhibit a higher selectivity toward Fe3+ ions than the other ions tested with Stern–Volmer constants of 4.41 × 106M?1, 3.28 × 107M?1, 1.25 × 106M?1, and 6.56 × 106M?1 for P1 , P2 , water soluble version of P2 ( P2S ) and P3 , respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A series of aregic poly(ester amide)s (a‐PEAT6) with ester/amide ratios (a : b) varying from 1 : 19 to 1 : 2 were prepared with L ‐tartaric acid, 6‐aminohexanol, and 1,6 hexanediamine as the starting materials. Polycondensation in a solution of the diamine with mixtures of pentachlorophenyl‐activated di‐O‐methyl‐L ‐tartaric and 6‐aminohexyl‐di‐O‐methyl‐L ‐tartaric acids led to a‐PEAT6(a : b), with the a : b ratio determined by the composition of the feed. The newly synthesized poly(ester amide)s were characterized by elemental analysis, size exclusion chromatography, and IR and NMR spectroscopy. They had number‐average molecular weights between 25,000 and 45,000 and were highly crystalline, showing melting temperatures ranging from 100 to 230 °C and glass‐transition temperatures oscillating between 50 and 100 °C. The thermal degradation of a‐PEAT6(a : b) began above 200 °C and concluded with a final weight loss between 60 and 90% of the initial mass. The process evolved with the formation of cyclic tartarimide units and extensive main‐chain scissions. The degradation mechanism is discussed in relation to the chemical composition and microstructure of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2687–2696, 2000  相似文献   

15.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

16.
A combination of NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF) techniques were suitable tools for examining the exchange reactions that occur during the melt‐mixing of nylon‐6 and poly(ethylene terephthalate) (Ny6/PET) blends in the presence of p‐toluene sulfonic acid (TsOH) at 285 °C. Some researchers believe that TsOH is an efficient catalyst for the amide–ester exchange reactions in PET/Ny6 and PET/nylon‐66 blends in the molten state. Instead, we have found that TsOH is able to react in the molten state with PET, yielding PET oligomers terminated with carboxyl groups. Because the latter oligomers can quickly react with Ny6 producing a Ny6/PET copolymer, the role of TsOH in the melt‐mixing process is not that of a catalyst but of a reactant. Our study allowed the structural identification of the Ny6/PET copolyesteramide produced in the exchange as a function of melt‐mixing time. The results revealed the essential role of carboxyl end groups in the exchange reaction between Ny6 and PET and allowed a detailed mechanism for this reaction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2778–2793, 2003  相似文献   

17.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

18.
Phenyl methacrylate and 1‐naphthyl methacrylate were polymerized in microemulsions using stearyltrimethylammonium chloride, cetyltrimethylammonium bromide, and a mixture of nonionic Triton surfactants to form latexes that were 20–30 nm in diameter. A temperature of 70 °C was needed to obtain polymers using thermal initiation. The tacticities of poly(phenyl methacrylate) (PPhMA) (55% rr) and poly(1‐naphthyl methacrylate) (P‐1‐NM) (47% rr) were the same as those of the polymers prepared in toluene solutions. The weight average molecular weights were 1 × 106 and 5 × 105 g/mol for PPhMA and P‐1‐NM prepared in microemulsions with very broad distributions. PPhMA samples from microemulsions and solution had the same Tg = 127 °C. P‐1‐NM from microemulsions had Tg = 145–147 °C compared with Tg = 142 °C for P‐1‐NM from solution. The molecular weights and the glass‐transition temperatures of both PPhMA and P‐1‐NM from microemulsions are substantially higher than any previously reported. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 519–524, 2001  相似文献   

19.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A multifunctional epoxy resin has been demonstrated to be an efficient reactive compatibilizer for the incompatible and immiscible blends of polyamide‐6 (PA 6) and polybutylene terephthalate (PBT). The torque measurements give indirect evidence that the reaction between PA and PBT with epoxy has an opportunity to produce an in situ formed copolymer, which can be as an effective compatibilizer to reduce and suppress the size of the disperse phase, and to greatly enhance mechanical properties of PA/PBT blends. The mechanical property improvement is more pronounced in the PA‐rich blends than that in the PBT‐rich blends. The fracture behavior of the blend with less than 0.3 phr compatibilizer is governed by a particle pullout mechanism, whereas shear yielding is dominant in the fracture behavior of the blend with more than 0.3 phr compatibilizer. As the melt and crystallization temperatures of the base polymers are so close, either PA or PBT can be regarded as a mutual nucleating agent to enhance the crystallization on the other component. The presence of compatibilizer and in situ formed copolymer in the compatibilized blends tends to interfere with the crystallization of the base polymers in various blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 23–33, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号