首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attempted ethenylation at C(2) of 2‐unsubstituted 1H‐imidazole N‐oxides with ethyl acrylate (=prop‐2‐enoate) in the presence of Pd(OAc)2 does not occur. In contrast to the other aromatic N‐oxides, the [2+3] cycloaddition of imidazole N‐oxides predominates, and 3‐hydroxyacrylates, isomeric with the cycloadducts, are key products for the subsequent reaction. The final products were identified as dehydrated 2+1 adducts of 1H‐imidazole N‐oxide and ethyl acrylate. The role of the catalyst is limited to the dehydration of the intermediate 3‐hydroxypropanoates to give 1H‐imidazol‐2‐yl‐substituted acrylates.  相似文献   

2.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

3.
A series of new optically active 1H‐imidazole 3‐oxides 5 with a substituted acetate group at N(1) as the chiral unit were prepared by the reaction of α‐(hydroxyimino) ketones, α‐amino acid methyl esters, and formaldehyde. In an analogous reaction, ethyl 2‐(hydroxyimino)‐3‐oxobutyrate and 1,3,5‐trialkylhexahydro‐1,3,5‐triazines gave 3‐oxido‐1H‐imidazole‐4‐carboxylates 14 , which easily rearranged into the 2‐oxo derivatives 15 . Selected examples of N‐oxides 5 could be transformed into the corresponding 2,3‐dihydro‐1H‐imidazole‐2‐thione derivatives 10 via a ‘sulfur‐transfer reaction’, and the reduction of the histidine derivative 5i with Raney‐Ni yielded the optically active 2,3‐bis(imidazolyl)propanoate 12 . Furthermore, reaction of the (1H‐imidazol‐1‐yl)acetates with primary amines yielded the corresponding acetamides.  相似文献   

4.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole‐3‐oxides 1 with 2,2‐bis(trifluoromethyl)ethene‐1,1‐dicarbonitrile ( 7 , BTF) yielded the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 10 and 2‐(1,3‐dihydro‐2H‐imidazol‐2‐ylidene)malononitriles 11 , respectively, depending on the solvent used. In one example, a 1 : 1 complex, 12 , of the 1H‐imidazole 3‐oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3‐dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X‐ray crystallography.  相似文献   

5.
6.
A convenient and simple method for the preparation of polybrominated benzimidazole derivatives has been described. Reaction of 4,5,6,7‐tetrabromo‐1‐(3‐chloropropyl)‐1H‐benzimidazole, obtained by alkylation of 4,5,6,7‐tetrabromo‐1H‐benzimidazole (TBBi) with 1‐bromo‐3‐chloropropane in the presence of KOH, with morpholine, aniline, benzylamine, N‐methyl piperazine, and 2‐arylpyrrolidines afforded new TBBi derivatives.  相似文献   

7.
8.
The phosphonylation of 2‐bromo‐formylanilides 1 with triethyl phosphite in the presence of preformed Pd(0)(triethyl phosphite)n catalyst furnished 2‐phosphono‐formanilides 2 in good yields. Reduction with excess LiAlH4 provided mainly N‐methyl‐2‐phosphinoanilines 3 and minor amounts of 1,2‐unsubstituted benzazaphospholes 4 . N‐Methyl‐1,3‐benzazaphospholes 5 were synthesized by the cyclocondensation of 3 with dimethylformamide dimethylacetal (DMFA). A more convenient route to 5 , avoiding the chromatographic separation of 4 , is the reduction of 1 to 2‐bromo‐N‐methylaniline 6 , followed by phosphonylation to 7 , LiAlH4 reduction, and cyclization with DMFA. The coordination properties at σ2P of benzazaphospholes are characterized by structural data obtained by the crystal structure analysis of ( 5b )W(CO)5.  相似文献   

9.
In this work, possible approaches to the synthesis of 1,2,5‐substituted 4‐phosphoryl‐3‐formylpyrroles have been considered. As a result, two methods for the synthesis of 4‐(diphenylphosphoryl)‐1‐(4‐ethoxyphenyl)‐2,5‐dimethyl‐1H‐pyrrole‐3‐carbal‐dehyde were proposed; the highest yields gives formylation of 3‐(diphenylphosphorothioyl)‐1‐(4‐ethoxyphenyl)‐2,5‐dimethyl‐1H‐pyrrole. The formyl fragment was successfully converted into a Schiff base with phenethylamine, and the phosphoryl group has been reduced to phosphine with silicochloroform, which suggests a promising approach to the synthesis of chiral bidentate phosphine ligands. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:146–151, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21069  相似文献   

10.
This presentation describes the successful synthesis of novel tetrazole‐based quinoline and tetrahydro‐1H‐β‐carboline derivatives via one‐pot multicomponent reactions in moderate to good yields. These reactions have presumably proceeded through Ugi‐azide or Ugi‐azide/Pictet–Spengler processes, respectively.  相似文献   

11.
A series of novel 1H‐indol‐2‐ol derivatives were synthesized and evaluated their antibacterial activities against rice bacterial leaf blight, tobacco bacterial wilt, and citrus canker caused by Xanthomonas oryzae pv. oryzae (Xoo), Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri via the turbidimeter test in vitro. Antibacterial bioassay indicated that most compounds demonstrated good inhibitory effect against Xoo and Ralstonia solanacearum. Especially, compound 4k demonstrated the best inhibitory effect against Xoo with half‐maximal effective concentration (EC50) value of 8.27 μg/mL, which was even better than those of commercial agents Bismerthiazol and Thiodiazole copper.  相似文献   

12.
The 1H‐imidazole‐mediated condensation of primary aliphatic amines with perylene‐3,4 : 9,10‐tetracarboxylic bis‐anhydride resulted in by‐products where the aliphatic group was functionalized in the β‐position by imidazole units.  相似文献   

13.
A series of novel 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles was synthesized in three steps from 5‐(1‐methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones. 5‐(1‐Methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones were converted into 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles upon methylation followed by treatment with aq. KMnO4. The reaction of 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles with Raney nickel resulted in desulphonylation to afford corresponding 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles. All the new synthesized compounds were characterized by spectral techniques.  相似文献   

14.
Optically active 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carboxylates, 2‐amino‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles, and 2‐amino‐8‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitriles were synthesized. Using cinchona alkaloid‐derived bifunctional catalysts, the corresponding 2‐amino‐4H‐chromene derivatives were obtained in high yields and moderate to high ee values (up to 82% ee) from the tandem Michael addition–cyclization reaction between 1,3‐cyclohexanediones or 1,2‐cyclohexanediones and (E )‐3‐aryl‐2‐cyanoacrylate or alkylidene malononitrile derivatives.  相似文献   

15.
2‐Unsubstituted 1,3‐selenazoles were prepared by cyclization of selenoformamide with α‐bromoacetophenones. Parent 1,3‐selenazole was prepared by cyclization of selenoformamide with α‐bromoacetaldehyde.  相似文献   

16.
In search of novel pyrazole derivatives with bioactivity, a series of 3‐methyl‐1H‐pyrazole‐4‐caboxylic: ester derivatives were synthesized via α‐oxoketene dithioacetals as starting material. The structures of all compounds prepared were confirmed by lH NMR, IR, MS and elemental analyses. Preliminary bioassays indicated that some compounds showed fungicidal activity against wheat rust, phoma asparagi and antiviral activity against TMV.  相似文献   

17.
Various 2H‐5,6‐dihydroselenine derivatives were synthesized by the reaction of α‐alkoxy carbonylselenoacetamides with α,β‐unsaturated ketones in the presence of BF3•Et2O.  相似文献   

18.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

19.
Complexes [ML3]2+ of the bidentate ligand 2‐(1H‐imidazol‐2‐yl)pyridine were prepared with iron(II), cobalt(II), and ruthenium(II). The electronic spectra suggest the ligand to be a weaker σ‐donor and π‐acceptor than the closely related 2,2′‐bipyridine. The complexes are readily deprotonated by addition of base, and the effect of the deprotonation is to lower the MIII/MII redox potential by roughly 900 mV. This is roughly 75% of the drop observed for related complexes of 2,6‐di‐1H‐imidazol‐2‐ylpyridine, and suggests the effect to be largely coulombic in origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号