首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

2.
For positive integers n1, n2, …, nI and graphs GI+1, GI+2, …, Gk, 1 ≤ / < k, the mixed Ramsey number χ(n1, …, n1, GI+1, …, Gk) is define as the least positive integer p such that for each factorization Kp = F1⊕ … ⊕ F FI+1⊕ … ⊕ Fk, it it follows that χ(Fi) ≥ ni for some i, 1 ? i ? l, or Gi is a subgraph of Fi for some i, l < i ? k. Formulas are presented for maxed Ramsey numbers in which the graphs GI+1, GI+2, …, Gk are connected, and in which k = I+1 and GI+1 is arbitray.  相似文献   

3.
Let ??(n, m) denote the class of simple graphs on n vertices and m edges and let G ∈ ?? (n, m). There are many results in graph theory giving conditions under which G contains certain types of subgraphs, such as cycles of given lengths, complete graphs, etc. For example, Turan's theorem gives a sufficient condition for G to contain a Kk + 1 in terms of the number of edges in G. In this paper we prove that, for m = αn2, α > (k - 1)/2k, G contains a Kk + 1, each vertex of which has degree at least f(α)n and determine the best possible f(α). For m = ?n2/4? + 1 we establish that G contains cycles whose vertices have certain minimum degrees. Further, for m = αn2, α > 0 we establish that G contains a subgraph H with δ(H) ≥ f(α, n) and determine the best possible value of f(α, n).  相似文献   

4.
We propose a conjecture: for each integer k ≥ 2, there exists N(k) such that if G is a graph of order nN(k) and d(x) + d(y) ≥ n + 2k - 2 for each pair of non-adjacent vertices x and y of G, then for any k independent edges e1, …, ek of G, there exist k vertex-disjoint cycles C1, …, Ck in G such that eiE(Ci) for all i ∈ {1, …, k} and V(C1 ∪ ···∪ Ck) = V(G). If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case k = 2 in the paper. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 105–109, 1997  相似文献   

5.
Let n1 ? n2 ? …? ? nk ? 2 be integers. We say that G has an (n1, n2, …?, nk-chromatic factorization if G) can be edge-factored as G1G2 ⊕ …? ⊕ Gk with χ(Gi) = nAi, for i = 1,2,…, k. The following results are proved:
  • i If (n1 ? 1)n2 …? nk < χ(G) ? n1n2 …? nk, then G has an (n1, n2, …?, nk)-chromatic factorization.
  • ii If n1 + n2 + …? + nk ? (k - 1) ? n ? n1n2 …? nk, then Kn has an (n1, n2, …?, nk)-chromatic factorization.
  相似文献   

6.
7.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

8.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = nD − 1 and f3(G) ≥ nO(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000  相似文献   

9.
A k-decomposition (G1,…,Gk) of a graph G is a partition of its edge set to form k spanning subgraphs G1,…,Gk. The classical theorem of Nordhaus and Gaddum bounds χ(G1) + χ(G2) and χ(G1)χ(G2) over all 2-decompositions of Kn. For a graph parameter p, let p(k;G) denote the maximum of over all k-decompositions of the graph G. The clique number ω, chromatic number χ, list chromatic number χℓ, and Szekeres–Wilf number σ satisfy ω(2;Kn) = χ(2;Kn) = χℓ(2;Kn) = σ(2;Kn) = n + 1. We obtain lower and upper bounds for ω(k;Kn), χ(k;Kn), χℓ(k;Kn), and σ(k;Kn). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of χ(k;G) over all graphs embedded on a given surface. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

11.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

12.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

13.
Let V be 2n-dimensional vector space over a field 𝕂 equipped with a nondegenerate skew-ψ-Hermitian form f of Witt index n ≥ 1, let 𝕂0 ? 𝕂 be the fix field of ψ and let G denote the group of isometries of (V, f). For every k ∈ {1, …, 2n}, there exist natural representations of the groups G ? U(2n, 𝕂/𝕂0) and H = GSL(V) ? SU(2n, 𝕂/𝕂0) on the k-th exterior power of V. With the aid of linear algebra, we prove some properties of these representations. We also discuss some applications to projective embeddings and hyperplanes of Hermitian dual polar spaces.  相似文献   

14.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

15.
In 2000, Enomoto and Ota [J Graph Theory 34 (2000), 163–169] stated the following conjecture. Let G be a graph of order n, and let n1, n2, …, nk be positive integers with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} {{n}}_{{{i}}} = {{n}}\end{eqnarray*}. If σ2(G)≥n+ k?1, then for any k distinct vertices x1, x2, …, xk in G, there exist vertex disjoint paths P1, P2, …, Pk such that |Pi|=ni and xi is an endpoint of Pi for every i, 1≤ik. We prove an asymptotic version of this conjecture in the following sense. For every k positive real numbers γ1, …, γk with \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} \gamma_{{{i}}} = {{1}}\end{eqnarray*}, and for every ε>0, there exists n0 such that for every graph G of order nn0 with σ2(G)≥n+ k?1, and for every choice of k vertices x1, …, xkV(G), there exist vertex disjoint paths P1, …, Pk in G such that \begin{eqnarray*}\sum\nolimits_{{{i}} = {{1}}}^{{{k}}} |{{P}}_{{{i}}}| = {{n}}\end{eqnarray*}, the vertex xi is an endpoint of the path Pi, and (γi?ε)n<|Pi|<(γi + ε)n for every i, 1≤ik. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 37–51, 2010  相似文献   

16.
Let i be a positive integer. We generalize the chromatic number X(G) of G and the clique number o(G) of G as follows: The i-chromatic number of G, denoted by X(G), is the least number k for which G has a vertex partition V1, V2,…, Vk such that the clique number of the subgraph induced by each Vj, 1 ≤ jk, is at most i. The i-clique number, denoted by oi(G), is the i-chromatic number of a largest clique in G, which equals [o(G/i]. Clearly X1(G) = X(G) and o1(G) = o(G). An induced subgraph G′ of G is an i-transversal iff o(G′) = i and o(GG′) = o(G) − i. We generalize the notion of perfect graphs as follows: (1) A graph G is i-perfect iff Xi(H) = oi(H) for every induced subgraph H of G. (2) A graph G is perfectly i-transversable iff either o(G) ≤ i or every induced subgraph H of G with o(H) > i contains an i-transversal of H. We study the relationships among i-perfect graphs and perfectly i-transversable graphs. In particular, we show that 1-perfect graphs and perfectly 1-transversable graphs both coincide with perfect graphs, and that perfectly i-transversable graphs form a strict subset of i-perfect graphs for every i ≥ 2. We also show that all planar graphs are i-perfect for every i ≥ 2 and perfectly i-transversable for every i ≥ 3; the latter implies a new proof that planar graphs satisfy the strong perfect graph conjecture. We prove that line graphs of all triangle-free graphs are 2-perfect. Furthermore, we prove for each i greater than or equal to2, that the recognition of i-perfect graphs and the recognition of perfectly i-transversable graphs are intractable and not likely to be in co-NP. We also discuss several issues related to the strong perfect graph conjecture. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
For α < ε0, Nα denotes the number of occurrences of ω in the Cantor normal form of α with the base ω. For a binary number-theoretic function f let B(K; f) denote the length n of the longest descending chain (α0, …, αn–1) of ordinals <ε0 such that for all i < n, Nαif (K, i). Simpson [2] called ε0 as slowly well ordered when B (K; f) is totally defined for f (K; i) = K · (i+ 1). Let |n| denote the binary length of the natural number n, and |n|k the k-times iterate of the logarithmic function |n|. For a unary function h let L(K; h) denote the function B (K; h0(K; i)) with h0(K, i) = K + |i| · |i|h(i). In this note we show, inspired from Weiermann [4], that, under a reasonable condition on h, the functionL (K; h) is primitive recursive in the inverse h–1 and vice versa.  相似文献   

18.
For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum integer r such that for every function f: E(Kr) ? Zk there is a copy G1 of G in Kr so that Σe∈E(G1) f(e) = 0 (in Zk). We prove that for every integer k1 R(Kn, Zk)n + O(k3 log k) provided n is sufficiently large as a function of k and k divides (). If, in addition, k is an odd prime-power then R(Kn, Zk)n + 2k - 2 and this is tight if k is a prime that divides n. A related result is obtained for hypergraphs. It is further shown that for every graph G on n vertices with an even number of edges R(G,Z2)n + 2. This estimate is sharp. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
For simple graphs G and H, let f(G,H) denote the least integer N such that every coloring of the edges of KN contains either a monochromatic copy of G or a rainbow copy of H. Here we investigate f(G,H) when H = Pk. We show that even if the number of colors is unrestricted when defining f(G,H), the function f(G,Pk), for k = 4 and 5, equals the (k ? 2)‐ coloring diagonal Ramsey number of G. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

20.
A decomposition ??={G1, G2,…,Gs} of a graph G is a partition of the edge set of G into edge‐disjoint subgraphs G1, G2,…,Gs. If Gi?H for all i∈{1, 2, …, s}, then ?? is a decomposition of G by H. Two decompositions ??={G1, G2, …, Gn} and ?={F1, F2,…,Fn} of the complete bipartite graph Kn,n are orthogonal if |E(Gi)∩E(Fj)|=1 for all i,j∈{1, 2, …, n}. A set of decompositions {??1, ??2, …, ??k} of Kn, n is a set of k mutually orthogonal graph squares (MOGS) if ??i and ??j are orthogonal for all i, j∈{1, 2, …, k} and ij. For any bipartite graph G with n edges, N(n, G) denotes the maximum number k in a largest possible set {??1, ??2, …, ??k} of MOGS of Kn, n by G. El‐Shanawany conjectured that if p is a prime number, then N(p, Pp+ 1)=p, where Pp+ 1 is the path on p+ 1 vertices. In this article, we prove this conjecture. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 369–373, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号