首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, an atificial neural network model is adopted to study the glass transition temperature of polymers. Inour artificial neural networks, the input nodes are the characteristic ratio C_∞, the average molecular weigh M_e betweenentanglement points and the molecular weigh M_(mon) of repeating unit. The output node is the glass transition temperature T_g,and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting theoutcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transitiontemperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas toinvestigate other properties of the polymers.  相似文献   

2.
Rheological experiments were carried out on a 1 wt % hydrophobically modified alkali‐soluble emulsion (HASE) solutions at pH ∼ 9 in the presence of nonionic polyoxyethylene ether type surfactant (C12EO23). The low shear viscosity and dynamic moduli increases at c > cmc until they reach a maximum at a critical concentration, cm of approximately 1 mM (∼17 times the cmc of free surfactant) and then decrease. The dominant mechanism at cmc < c < cm is an increase in the number of intermolecular hydrophobic junctions and a strengthening of the overall associative network structure. Above cm, the disruption of the associative network causes a reduction in the number of junctions and strength of the overall network structure. The influence of C12EO23 on HASE before cmc could not be detected macroscopically by the rheological technique. However, isothermal titration calorimetry enables the determination of complex binding of surfactant to the polymer. Isothermal titration of C12EO23 into 0.1 wt % HASE indicates that the C12EO23 aggregation in water and 0.1 wt % HASE polymer solutions is entropically driven. A reduction in the critical aggregation concentration (cac) confirms the existence of polymer–surfactant interactions. The hydrophobic micellar junctions cause a decrease in the ΔH and ΔS of aggregation of the nonionic surfactant. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2019–2032, 2000  相似文献   

3.
As an extension of our work on the elucidation of the mechanism and control of 3‐dimensional network formation in the free‐radical crosslinking polymerization and copolymerization of multivinyl compounds with the aim to molecularly design vinyl‐type network polymers, novel amphiphilic polymers were prepared as crosslinked polymer precursors. Thus, benzyl methacrylate, a nonpolar monomer, was copolymerized radically with 5 mol % of triicosaethylene glycol dimethacrylate [CH2C(CH3)CO(OCH2CH2)23OCOC(CH3)CH2], a polar monomer, in the presence of lauryl mercaptan as a chain transfer agent. The resulting prepolymers (i.e., vinyl‐type network‐polymer precursors or amphiphilic polymers) were characterized mainly by viscometry using t‐butylbenzene (t‐BB) and a t‐BB/MeOH (80/20) mixture as solvents. The viscosities in the t‐BB/MeOH (80/20) mixture were quite high compared with those in t‐BB, and completely reversed concentration dependencies were observed in the solvents. These are discussed by considering the difference in conformation and the shrinkage of polar, flexible polyoxyethylene units or the entanglement of nonpolar, rigid primary chains. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4396–4402, 2000  相似文献   

4.
The living anionic copolymerization of styrene with 1,2‐bis(4′‐ethenylphenyl)ethane (1) or p‐divinylbenzene (PDVB) with sec‐butyllithium in benzene was carried out. The copolymerizations of styrene with more than 20 mol % of 1 gave insoluble polymers in quantitative yields, whereas the yield showed the maximum (97%) for PDVB at 15 mol %. The content of unreacted double bonds of the network polymer formed by the copolymerization with PDVB was four times as large as that formed with 1. Gas chromatographic analyses of the copolymerization suggested close reactivities of the double bonds between styrene and 1, whereas a rapid consumption of PDVB compared with styrene was observed in their copolymerization. The r1, r2,and r1r2 values for the copolymerization of styrene with 1 were determined to be 1.00, 1.09, and 1.09, respectively, which suggests that a more homogeneous network structure can be attained with 1. The living chain end of the produced living gel initiated the polymerization of tert‐butyl methacrylate to give an insoluble block copolymer in a good yield. The hydrolysis of the ester group of the block copolymer led to an amphiphilic copolymer that exhibited a characteristic property of a hydrogel. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2543–2547, 2000  相似文献   

5.
We present a novel Monte‐Carlo lattice model for the study of the coil‐stretch transition for polymer chains in deformation flows. Our results indicate that elongational flows are much more effective than shear flows in stretching polymer chains, in full agreement with experimental observation. Our model data also show that the ε˙cM−1.5 powerlaw observed experimentally for the dependence of critical flow rate on polymer molecular weight can be fully explained through a nonuniform stretching of the chain by the flow. A higher powerlaw exponent is predicted in more affine deformation cases. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2422–2428, 2000  相似文献   

6.
The half‐titanocene (η5‐pentamethylcyclopentadienyl)tribenzyl titanium (Cp*TiBz3) with methylaluminoxane (MAO) as the cocatalyst was employed to catalyze propene polymerization at ambient pressure. A novel atactic polypropene elastomer with a high molecular weight (w = 2 − 8 × 105) was produced. The effects of the polymerization conditions on the catalytic activity and polymer molecular weight are discussed. 13C NMR analysis confirmed that the catalyst system Cp*TiBz3/MAO produced atactic polypropenes, and the polymerization mechanism was in agreement with the Bernoullian process. The triad sequence distribution of the polymer was measured and found to be as follows: mm = 6.15%, mr = 40.87%, and rr = 52.98% (Bernoullian factor B = 1.03); this indicated that the insertion of propene with the catalyst system followed a chain‐end control model. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 411–415, 2000  相似文献   

7.
In this article, the synthesis of a tris(8‐hydroxyquinoline)aluminum (AlQ3)‐containing poly(arylene ether) (4) is reported. The presence of AlQ3 pendants in polymer 4 is confirmed by NMR, ultraviolet–visible, photoluminescence, and gel permeation chromatography analyses. This is the first report of the attachment of AlQ3 complexes as side chains to a polymer. Polymer 4 has a glass‐transition temperature of 217.8 °C and is thermally stable with a 5% weight‐loss temperature greater than 500 °C under nitrogen, as determined by differential scanning calorimetry and thermogravimetric analyses, respectively. Polymer 4 is quite soluble in common organic solvents, such as tetrahydrofuran, N,N‐dimethylacetamide, and CHCl3. A composite that is 80 wt % polymer 4 and 20 wt % AlQ3 forms a transparent and tough film when cast from its chloroform solution. The application of this AlQ3‐containing polymer in light‐emitting diodes is under investigation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2887–2892, 2000  相似文献   

8.
The influence of the continuous phase viscosity (μc) on the diameter of styrene‐divinylbenzene polymer beads was studied over a large range of viscosities at constant dissipated power. This study was based on the inertial breakup and viscous shear breakup theories for a stirred dispersion. These two theoretical models were compared with an experiment for the two highly viscous agents sucrose and acacia gum [dispersed and continuous phase viscosities (μd, μc) = 10−3 < μdc < 1]. We found that the maximum diameters of the polymer beads could not be described by an inertial breakup. The maximum diameters were in good agreement with a viscous shear breakup model for the two viscous agents in turbulent and semilaminar flows. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 201–210, 2001  相似文献   

9.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

10.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction dielectric constant of different ternary liquid mixtures at various temperatures (?10°C?≤?t?≤?80°C) and over the complete composition range (0?≤?x 1,?x 2,?x 3?≤?1). A three-layered feed forward ANN with architecture 7-16-1 was generated using seven parameters as inputs and its output is dielectric constant of media. It was found that properly selected and trained neural network could fairly represent the dependence of dielectric constant of different ternary liquid mixtures on temperature and composition. For the evaluation of the predictive power of the generated ANN, an optimized network was applied for predicting the dielectric constant in the prediction set, which were not used in the modeling procedure. Squared correlation coefficient (R 2) and root mean square error for prediction set are 0.9997 and 0.2060, respectively. The mean percent deviation (MPD) for the property in the prediction set is 0.8892%. The results show nonlinear dependence of dielectric constant of ternary mixed solvent systems on temperature and composition is significant.  相似文献   

11.
A conjugated main‐chain copolymer ( PBT ) consisting of bithiazole, dithieno[3,2‐b:2′,3′‐d]pyrroles (DTP), and pendent melamine units was synthesized by Stille polymerization, which can be hydrogen‐bonded (H‐bonded) with proper molar amounts of bi‐functional π‐conjugated crosslinker F (i.e., two uracil motifs covalently attached to a fluorene core through triple bonds symmetrically) to develop a novel supramolecular polymer network ( PBT/F ). The effects of multiple H‐bonds on light harvesting capabilities, HOMO levels, and photovoltaic properties of polymer PBT and H‐bonded polymer network PBT/F are investigated. The formation of supramolecular polymer network ( PBT/F ) between PBT and F was confirmed by FTIR and XRD measurements. Because of the stronger light absorption, lower HOMO level, and higher crystallinity of H‐bonded polymer network PBT/F , the solar cell device containing PBT/F showed better photovoltaic properties than that containing polymer PBT . The preliminary results show that the solar cell device containing 1:1 weight ratio of PBT/F and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) offers the best power conversion efficiency (PCE) value of 0.86% with a short‐circuit current density (Jsc) of 4.97 mA/cm2, an open circuit voltage (Voc) of 0.55 V, and a fill factor (FF) of 31.5%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The thermal properties of blends of polycarbonate (PC) and poly(ε‐caprolactone) (PCL) were investigated by differential scanning calorimetry (DSC). From the thermal analysis of PC‐PCL blends, a single glass‐transition temperature (Tg) was observed for all the blend compositions. These results indicate that there is miscibility between the two components. From the modified Lu and Weiss equation, the polymer–polymer interaction parameter (χ12) of the PC‐PCL blends was calculated and found to range from −0.012 to −0.040 with the compositions. The χ12 values calculated from the Tg method decreased with the increase of PC weight fraction. By taking PC‐PCL blend as a model system, the values of χ12 were compared with two different methods, the Tg method and melting point depression method. The two methods are in reasonably good agreement for the χ12 values of the PC‐PCL blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2072–2076, 2000  相似文献   

13.
The polyaddition of bis(3‐ethyl‐3‐oxetanylmethyl) terephthalate (BEOT) with dichlorodiphenylsilane (CPS) using tetrabutylammonium bromide (TBAB) as a catalyst proceeded under mild reaction conditions to afford a polymer containing silicon atoms in the polymer main chain. A poly(silyl ether) (P‐1) with a high molecular weight (Mn = 53,200) was obtained by the reaction of BEOT with CPS in the presence of 5 mol % of TBAB in toluene at 0 °C for 1 h and then at 50 °C for 24 h. The structure of the resulting polymer was confirmed by IR and 1H NMR spectra. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with dichlorosilanes proceeds smoothly to give corresponding poly(silyl ether)s with TBAB as the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2254–2259, 2000  相似文献   

14.
The radical polymerization behavior of 1‐cyano‐o‐quinodimethane generated by thermal isomerization of 1‐cyanobenzocyclobutene in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxide (TEMPO) and the block copolymerization of the obtained polymer with styrene are described. The radical polymerization of 1‐cyanobenzocyclobutene was carried out in a sealed tube at temperatures ranging from 100 to 150 °C for 24 h in the presence of di‐tert‐butyl peroxide (DTBP) as a radical initiator and two equivalents of TEMPO as a trapping agent of the propagation end radical to obtain hexane‐insoluble polymer above 130 °C. Polymerization at 150 °C with 5 mol % of DTBP in the presence of TEMPO resulted in the polymer having a number‐average molecular weight (Mn ) of 2900 in 63% yield. The structure of the obtained polymer was confirmed as the ring‐opened polymer having a TEMPO unit at the terminal end by 1H NMR, 13C NMR, and IR analyses. Then, block copolymerization of the obtained polymer with styrene was carried out at 140 °C for 72 h to give the corresponding block copolymer in 82% yield, in which the unimodal GPC curve was shifted to a higher molecular weight region. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3434–3439, 2000  相似文献   

15.
The condensation polymerization in a methanol solution of four different esterified aldaric acids (D ‐glucaric, meso‐xylaric, meso‐galactaric, and D ‐mannaric) with even‐numbered alkylenediamines (C2–C12) gave polyhydroxypolyamides whose water solubilities and melting points were compared. In general, an increase in the alkylenediamine monomer length resulted in decreased polyamide water solubility. Differences in the polymer melting points and water solubilities were linked primarily to conformational differences of the monomer aldaryl units; for example, polyamides from meso‐galactaric acid with an extended zigzag conformation aldaryl monomer unit had higher melting points and lower water solubilities than those from D ‐glucaric and meso‐xylaric acids. The latter acid monomer units tended toward bent conformations that served to diminish intermolecular attractive forces between polymer chains, affecting polymer solubility and melting characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 594–603, 2000  相似文献   

16.
The free volume behaviour of the polyacrylonitrile/lithium triflate system is investigated over the composition range 0–75 wt % salt. The addition of salt, up to 45 wt %, to the PAN polymer substantially increases the free volume as measured by the orthopositronium pickoff lifetime, τ3. Beyond this salt concentration (i.e., 45–70 wt %) the free volume remains approximately constant. This constant free volume region corresponds to a region of high ionic conductivity in the glassy state, making these materials polymer‐based fast ion conductors, that is, having a decoupling ratio Rτ ≫1. The high salt content in these fast ion conductors results in a high susceptibility to polar solvents such as water. For all compositions, water absorption results in a free volume increase attributed to plasticization; however, in the fast ion conducting region, a significantly larger free volume response due to plasticization is measured and may be connected to a percolation morphology in these samples. Salt addition is shown to lower the Tg, as measured by positron annihilation lifetime spectroscopy (PALS). Tg is 115°C for PAN and 85°C for 66 wt % lithium triflate. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 341–350, 2000  相似文献   

17.
The reactions of polylactic acid (PLA) oligomers and isocyanates (4,4′‐diphenylmethane diisocyanate and toluene diisocyanate) are reported. The effects of the reaction conditions, that is, the reaction time, reaction temperature, molar ratios, isocyanates, and catalyst, on the number‐average molecular weight (Mn ) are demonstrated. The optimum reaction conditions are determined by the synthesis of relatively high Mn PLA‐based linear polyurethanes. The structure of the polymer samples was investigated with dynamic light scattering, 1H NMR, IR, and matrix‐assisted laser‐desorption ionization time‐of‐flight mass spectroscopy (MALDI‐TOF MS). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2925–2933, 2000  相似文献   

18.
The heterochain crosslinking model describes nonrandom crosslinking of polymer chains and is an extension of the classical Flory/Stockmayer gelation theory. We consider the postgelation relationship for the system consisting of N types of polymer chains, in which the probability that a crosslink point on an i‐type chain is connected to a j‐type chain is explicitly given by pij. The analytical solutions for the weight fraction of the sol, the number‐average and weight‐average molecular weights within the sol fraction, and the crosslinking density within the sol and gel fractions are derived for the systems, with each type of chain conforming to the Schulz–Zimm distribution. Illustrative calculations are shown for the systems consisting of two and three types of chains, and the obtained results agree with those from the Monte Carlo method. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2333–2341, 2000  相似文献   

19.
We tested forward recoil spectrometry (FRES) as a method to determine miscibility by measuring coexistence compositions in binary polymer blends. In this study, equilibrium phase compositions were determined for a compositionally symmetric poly(styrene‐ran‐methyl methacrylate) random copolymer (S0.49r‐MMA) and two homopolymers, deuterated polystyrene (dPS) and deuterated poly(methyl methacrylate) (dPMMA). Sample preparation, film dewetting, and beam damage were addressed, and the results for these polymer blends were in good agreement with those obtained through other experimental techniques. Deuteration had a strong effect on the miscibility of the dPS/S0.49r‐MMA and dPMMA/S0.49r‐MMA blends, to the extent that the asymmetric miscibility observed separately for the PS/S0.49r‐MMA and PMMA/S0.49r‐MMA blends was not found. Although this deuteration effect may limit the applicability of FRES for some polymer systems, the accuracy with which phase compositions can be determined with FRES makes it an attractive alternative to other less quantitative methods for investigating blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1547–1552, 2000  相似文献   

20.
High‐pressure rheological behavior of polymer melts containing dissolved carbon dioxide (CO2) at concentrations up to 6 wt % were investigated using a high‐pressure extrusion slit die rheometer. In particular, the steady shear viscosity of poly(methyl methacrylate), polypropylene, low‐density polyethylene, and poly(vinylidene fluoride) with dissolved CO2 were measured for shear rates ranging from 1 to 500 s?1 and under pressure conditions up to 30 MPa. The viscosity of all samples revealed a reduction in the presence of CO2 with its extent dependent on CO2 concentration, pressure, and the polymer used. Two types of viscoelastic scaling models were developed to predict the effects of both CO2 concentration and pressure on the viscosity of the polymer melts. The first approach utilized a set of equations analogous to the Williams–Landel–Ferry equation for melts between the glass‐transition temperature (Tg) and Tg + 100 °C, whereas the second approach used equations of the Arrhenius form for melts more than 100 °C above Tg. The combination of these traditional viscoelastic scaling models with predictions for Tg depression by a diluent (Chow model) were used to estimate the observed effects of dissolved CO2 on polymer melt rheology. In this approach, the only parameters involved are physical properties of the pure polymer melt that are either available in the existing literature or can be measured under atmospheric conditions in the absence of CO2. The ability of the proposed scaling models to accurately predict the viscosity of polymer melts with dissolved high‐pressure CO2 were examined for each of the polymer systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3055–3066, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号