首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Recently we had formulated the supersymmetric Wentzel–Kramers–Brillouin (SWKB) quantization rule for one-dimensional confined quantum systems and applied the same to two trigonometric potentials, tangentially limited by infinite walls at x=0 and x=L, viz., V(x)=V 0cot2(x/L) and the Pöschl–Teller potential, V(x)=V 01cosec2({x/(2L))}+V 02sec2(x/(2L)). Both the potentials have received quite a lot of attention by various authors because of their importance in molecular physics. Though these potentials have been studied in the framework of WKB, BS (Bohr–Sommerfeld), mBS (matrix formulation of BS) formalisms, it was observed that the supersymmetric approach not only rendered the calculations simpler and more transparent, it also reproduced the exact analytical energies in both the cases.In this study, we shall generate isospectral Hamiltonians of the above potentials with the help of a modified form of Darboux's theorem. We shall show that though the new potentials look different from the original ones, and have different eigenfunctions, they too, are confined in the same region of space, and share the same energy spectrum as their original counterparts. This may be of substantial importance in determining the energy spectrum of highly non-trivial systems.  相似文献   

2.
In one dimension, the Slater sum S(x, β), which is the diagonal element of the canonical density matrix, satisfies a known partial differential equation characterised by a one-body potential V(x). Here, for the case of a sech2 x potential in one dimension, it is stressed that S(x, β) is explicitly related to the limit S 0(β) as V(x) → 0 and to V(x) itself. This is the same input information as in the Thomas–Fermi result. The relevance to density functional theory is emphasised.  相似文献   

3.
V2O3(OH)4(g), Proof of Existence, Thermochemical Characterization, and Chemical Vapor Transport Calculations for V2O5(s) in the Presence of Water By use of the Knudsen-cell mass spectrometry the existence of V2O3(OH)4(g) is shown. For the molecules V2O3(OH)4(g), V4O10(g), and V4O8(g) thermodynamic properties were calculated by known Literatur data. The influence of V2O3(OH)4(g) for chemical vapor transport reactions of V2O5(s) with water ist discussed. ΔBH°(V2O3(OH)4(g), 298) = –1920 kJ · mol–1 and S°(V2O3(OH)4(g), 298) = 557 J · K–1 · mol–1, ΔBH°(V4O10(g), 298) = –2865,6 kJ · mol–1 and S°(V4O10(g), 298) = 323.7 J · K–1 · mol–1, ΔBH°(V4O8(g), 298) = –2465 kJ · mol–1 and S°(V4O8(g), 298) = 360 J · K–1 · mol–1.  相似文献   

4.
The solid solutions (V1–xWx)OPO4 with β‐VOPO4 structure type (0.0 ≤ x ≤ 0.01) and αII‐VOPO4 structure type (0.04 ≤ x ≤ 0.26) were obtained from mixtures of VVOPO4 and WVOPO4 by conventional solid state reactions and by solution combustion synthesis. Single crystals of up to 3 mm edge length were obtained by chemical vapor transport (CVT) (800 → 700 °C, Cl2 as a transporting agent). Single crystal structure refinements of crystals at x = 0.10 [a = 6.0503(2) Å, c = 4.3618(4) Å, R1 = 0.021, wR2 = 0.058, 21 parameters, 344 independent reflections] and x = 0.26 [a = 6.0979(2) Å, c = 4.2995(1) Å, R1 = 0.030, wR2 = 0.081, 21 parameters, 346 independent reflections] confirm the αII‐VOPO4 structure type (P4/n, Z = 2) with mixed occupancy V/W for the metal site. Due to the specific redox behavior of W5+ and V5+, solid solutions (V1–xWx)OPO4 should be formulated as (VIVxVV1–2xWVIx)OPO4. The valence states of vanadium and tungsten are confirmed by XPS measurements. V4+ with d1 configuration was identified by EPR spectroscopy and magnetic measurements. Electronic spectra of the solid solutions show the IVCT(V4+ → V5+) and the LMCT(O2– → V5+). (V0.74W0.26)OPO4 powders exhibit semi‐conducting behavior (Eg = 0.7 eV).  相似文献   

5.
Yang  S. Y.  Zhang  S.  Fu  B. L.  Wu  Q.  Liu  F. L.  Deng  C. 《Journal of Solid State Electrochemistry》2010,15(11):2633-2638

A series of Cr-doped Li3V2 − x Cr x (PO4)3 (x = 0, 0.1, 0.25, and 0.5) samples are prepared by a sol–gel method. The effects of Cr doping on the physical and chemical characteristics of Li3V2(PO4)3 are investigated. Compared with the XRD pattern of the undoped sample, the XRD patterns of the Cr-doped samples have no extra reflections, which indicates that Cr enters the structure of Li3V2(PO4)3. As indicated by the charge–discharge measurements, the Cr-doped Li3V2 − x Cr x (PO4)3 (x = 0.1, 0.25, and 0.5) samples exhibit lower initial capacities than the undoped sample at the 0.2 C rate. However, both the discharge capacity and cycling performance at high rates (e.g., 1 and 2 C) are enhanced with proper amount of Cr doping (x = 0.1). The highest discharge capacity and capacity retention at the rates of 1 and 2 C are obtained for Li3V1.9Cr0.1(PO4)3. The improvement of the electrochemical performance can be attributed to the higher crystal stability and smaller particle size induced by Cr doping.

  相似文献   

6.
I have studied the dynamics of photodetachment from closed‐shell anions in the presence of a two‐color (bichromatic) laser field. The electronic states of halide ions are modeled by a 1‐D Hamiltonian with a potential V(x) = ?V0e. The two parameters V0 and σ are fixed by requiring V(x) to reproduce the experimentally observed ground‐state ionization energy of the halide ions concerned. The potentials so generated are shown to support only one bound state in each case. The time‐dependent Fourier grid Hamiltonian method is used to follow the detachment dynamics with fairly high intensities of light. The environmental effects on the dynamics are sought to be modeled by allowing the well depth (V0) to fluctuate randomly (V0(t) = V0[1 + ΔVR(t)]; R(t) randomly fluctuates between +1 and ?1 with time, when ΔV is fixed). The average detachment rate constants kav are seen to increase with increase in the intensities of used bichromatic field. An alternative model potential, V(x) = ?V0ex, is also shown to yield similar results. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

7.
The electronic states of halide ions are modeled by a one‐dimensional Hamiltonian with a potential V(x)=−V0e. The two parameters V0 and σ are fixed by requiring V(x) to reproduce the experimentally observed ground‐state ionization potentials of the halide ions concerned. The potentials so generated are shown to support only one bound state in each case. The time‐dependent Fourier grid Hamiltonian method is used to follow the ionization dynamics in monochromatic light of fairly high intensities. The total Hamiltonian, in the most general case, reads H(t)=P/2mV0e−ϵ0s(t)ex sin(ωt). For pulsed fields [s(t)=sin2t/tp)], the computed ionization rate constants are seen to increase with increase in the peak intensity (ϵ0) of the electric field of light. The possibility of additional transient bound states being generated at the high intensities of light and its possible consequences on the observed ionization rates are explored. The environmental effects on the dynamics are sought to be modeled by allowing the well depth (V0) to fluctuate randomly [V0(t)=V0VR(t); R(t) randomly fluctuates between +1 and −1 with time, ΔV is fixed]. The ionization rate constants (kϵ) are shown to be significantly affected by fluctuations in V0 and pass through a well‐defined minimum in each case for a certain specified frequency of fluctuation. An alternative model potential V(x)=−V0e−σx is also shown to yield similar results. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 469–478, 1999  相似文献   

8.
The reactions of cerium–vanadium cluster cations CexVyOz+ with CH4 are investigated by time‐of‐flight mass spectrometry and density functional theory calculations. (CeO2)m(V2O5)n+ clusters (m=1,2, n=1–5; m=3, n=1–4) with dimensions up to nanosize can abstract one hydrogen atom from CH4. The theoretical study indicates that there are two types of active species in (CeO2)m(V2O5)n+, V[(Ot)2]. and [(Ob)2CeOt]. (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size‐dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2)m(V2O5)n+ clusters falls between those of (CeO2)2–4+ and (V2O5)1–5+ in terms of C?H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping.  相似文献   

9.
A family of solution-stable polyanions [Na⊂{LnIII(H2O)}{WVIO(H2O)}PV4WVI26O98]12− (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) represent the first examples of polyoxometalates comprising a single lanthanide(III) or yttrium(III) ion in a rare trigonal prismatic O6 environment. Their synthesis exploits the reactivity of the organophosphonate-functionalized precursor [P4W24O92(C6H5PVO)2]16− with heterometal ions and yields hydrated potassium or mixed lithium/potassium salts of composition KxLnyH12–xy[Na⊂{Ln(H2O)}{WO(H2O)}P4W26O98]⋅nH2O⋅mLiCl (x=8.5–11; y=0–2; n=24–34; m=0–1.5). The Dy, Ho, Er and Yb derivatives are characterized by slow magnetization relaxation.  相似文献   

10.
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.   相似文献   

11.
Titanium‐oxide‐based materials are considered attractive and safe alternatives to carbonaceous anodes in Li‐ion batteries. In particular, the ramsdellite form TiO2(R) is known for its superior lithium‐storage ability as the bulk material when compared with other titanates. In this work, we prepared V‐doped lithium titanate ramsdellites with the formula Li0.5Ti1?xVxO2 (0≤x≤0.5) by a conventional solid‐state reaction. The lithium‐free Ti1?xVxO2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion‐extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5Ti1?xVxO2 compounds and to follow the lithium extraction by difference‐Fourier maps. Previously delithiated Ti1?xVxO2 ramsdellites are able to insert up to 0.8 Li+ per transition‐metal atom. The initial gravimetric capacities of 270 mAh g?1 with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2‐related intercalation compounds for the threshold of one e? per formula unit.  相似文献   

12.
The solution of a generalized non-relativistic Schrödinger equation with radial potential energy V(r)=V 0(r/a 0)2–2 is presented. After reviewing the general properties of the radial ordinary differential equation, power series solutions are developed. The Green's function is constructed, its trace and the trace of its first iteration are calculated, and the ability of the traces to provide upper and lower bounds for the ground eigenvalue is examined. In addition, WKB-like solutions for the eigenvalues and eigenfunctions are derived. The approximation method yields valid eigenvalues for large quantum numbers (Rydberg states).  相似文献   

13.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

14.
In this work, the g factors, dd transition band, local distortion, and their concentration dependences for impurity V4+ in 20Li2O–20PbO–45B2O3–(15 − x)P2O5:V2O5 (0 ≤ x ≤ 2.5 mol%) glasses are theoretically investigated by using perturbation formulas of g factors for a tetragonally compressed octahedral 3d1 cluster. In the light of the cubic polynomial concentration functions for cubic field parameter Dq, covalency factor N, and relative tetragonal compression ratio ρ, the calculated concentration dependences of dd transition band and g factors for V4+ show good agreement with the experimental data. With increasing x, N (≈0.7682–0.8165) displays the monotonously increasing trend, whereas ρ (≈6.5–4.2%) and Dq (≈1504.9–1481.1 cm−1) exhibit the decreasing tendencies. The above concentration dependences can be ascribed to the modifications of the V4+–O2− bonding and orbital admixtures around the impurity V4+ due to the effects of V2O5 doping on the stability of the glass network, the strength of local crystal fields, and the electron cloud distribution.  相似文献   

15.
The chain dimensions 〈R2〉 of nondilute polymer solutions confined to a slit of the width D were studied using lattice simulations. It was found that the chain compression induced in good solvents by the concentration ϕ is enhanced in a slit relative to the bulk. The global dimensions of chains also change with ϕ in confined and unconfined theta solutions. At intermediate slit widths, a region was noted where coils are squeezed along all three axes. This region is manifested as a channel on the three‐dimensional surface 〈R2〉(D,ϕ) in both good and theta solvents. The coil anisotropy, given by the ratio of the parallel and perpendicular components of the chain dimensions 〈Ry2〉/〈Rx2〉, reaches high values at strong confinements, where coils form quasi‐two‐dimensional pancakes. The concentration‐induced reduction of the global chain dimensions in good solvents is almost fully transmitted to the parallel component 〈Ry2〉. The computed effects of concentration and confinement were compared with the predictions of mean‐field and scaling theories, and implications of the results to ultrathin films and layered nanocomposites were discussed. In addition, the distribution functions of the components of the end‐to‐end distance R perpendicular and parallel to the plates, W (Rx) and W (Ry), were calculated. The function W (Rx) combined with the concentration profile ϕ (x) along the pore provided details of the chain structure close to walls. A marked difference in the pace of the filling up of the depletion layer was noticed between chains in theta and good solvents. From the distribution functions W (Rx) and W (Ry), the highly anisotropic force‐elongation relations imply the deformation of chains in confined solutions and ultrathin bulk films.  相似文献   

16.
Vanadium‐containing heteropoly acid solutions of Keggin H3+xPMo12–xVxO40 and modified HaPzMoyVxOb types (P‐Mo‐V HPAs) are promising nanosized inorganic metal‐oxygen cluster compounds with the property of reversible oxidability (VV ↔ VIV). The oxidation of reduced P‐Mo‐V HPAs at a temperature of 130–170 °C and an oxygen pressure of 4 atm is a convenient method for their regeneration, but results in regeneration degree of only 75–88 %. Various materials with electron transfer or oxidative properties, such as nitrogen doped carbon nanofibers (N‐CNFs), Sibunit‐4, HNO3, and MoO2, were investigated as additives to facilitate and accelerate the regeneration of HPA solutions. Among the studied additives HNO3 was found to show the best efficiency, resulting in regeneration degree of higher 95 %. Rapid and efficient regeneration of spent HPA catalysts is an important criterion for achieving high productivity and sustainability of oxidative processes on their basis.  相似文献   

17.
The Green's functions for the simplest quantum mechanical systems the linear harmonic oscillator, the three-dimensional isotropic oscillator, the Morse oscillator, the Kratcer potential, and the double-minimum potential V(x) = (mw2/2)(/x/?R)2 are presented in closed analytical forms.  相似文献   

18.
《Solid State Sciences》2004,6(7):689-696
Two interesting neutral tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2·xH2O (phen=1,10-phenanthroline, EtOH=ethanol, M=Co, x=7, 1; M=Ni, x=6, 2) were hydrothermally prepared and structurally characterized. The mixed molybdenum–vanadium polyoxoanion [MoVI7MoVVIV8O40(PO4)]4− exist in both two complexes, which acts as a bridge to covalently link two pairs of transition metal complex fragments, generating neutral windmill-like trimetallic nanocluster polyoxometalates. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 reveal that antiferromagnetic exchange interaction exists in this type of trimetallic tetrasupporting heteropolyoxometalates.  相似文献   

19.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

20.
The problem considered here can be viewed as the analogue in higher dimensions of the one variable polynomial interpolation of Lagrange and Newton. Let x1,...,x r be closed points in general position in projective spacePn, then the linear subspaceV ofH 0 (⨑n,O(d)) (the space of homogeneous polynomials of degreed on ⨑n) formed by those polynomials which are singular at eachx i, is given by r(n + 1) linear equations in the coefficients, expressing the fact that the polynomial vanishes with its first derivatives at x1,...,x r. As such, the “expected” value for the dimension ofV is max(0,h 0(O(d))−r(n+1)). We prove thatV has the “expected” dimension for d≥5 (theorem A). This theorem was first proven in [A] using a very complicated induction with many initial cases. Here we give a greatly simplified proof using techniques developed by the authors while treating the corresponding problem in lower degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号