共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Comprehensive two‐dimensional gas chromatography (GC×GC) is an utterly suitable separation technique for the analysis of complex samples, such as oil fractions. Once the two columns and the operating conditions are properly tuned, the technique is able to provide a detailed characterization of such materials. Some considerations applying to the tuning of a GC×GC system for a specific separation are presented and discussed. The authors present a number of different column sets and conditions which allow the separation of a non‐aromatic hydrocarbon solvent, a kerosene, the light end of a crude oil, and an olefinic fraction, respectively. The highly structured GC×GC chromatograms, together with chemical knowledge about the samples, provide a much more comprehensive characterization of the samples than hitherto possible. 相似文献
3.
Comprehensive three‐dimensional gas chromatography (GC3) is demonstrated using modified GC×GC apparatus. A new thermal modulation scheme employing a single moving heater to operate two thermal modulators is introduced. Considerations of the bandwidth/resolution tradeoff of GC3 show that high‐speed tertiary columns would make GC3 practical, with modest loss of underlying GC×GC peak capacity. 相似文献
4.
A software program was developed to enable the quantification of the complex 3D-data sets as produced by GC×GC. Using this software, it was demonstrated that the detectability limit of GC×GC in our study is 18 times better than that of ‘normal’ capillary gas chromatography (CGC). This enhancement is due to the signal increase produced by the thermal modulation effect. The relative standard deviation of 0.9% as measured on a test mixture was excellent. Furthermore, a comparison was made for the group-type separation of heavy gas oils between the hyphenation of LC and GC (LC-GC) and GC×GC. Although these separations are different in nature, the agreement of the results of both methods was very good. The results of GC×GC may even be more accurate, since, different from CGC, even in the most complex chromatograms the baseline in the second dimension chromatograms is always present. 相似文献
5.
Wolfgang Bertsch 《Journal of separation science》2000,23(3):167-181
The writer of this review published in 1978 a three‐part article on two‐dimensional gas chromatography in the first three issues of this journal [1]. The review was written at a time when capillary column GC was still in its infancy. Commercial columns were (essentially) unavailable and sample introduction into capillary columns was done exclusively in the split mode. Two‐dimensional separations were explored in only a few laboratories. The limitations of capillary column technology made this exercise rather difficult. The introduction of fused silica capillary columns in the early eighties drastically changed the landscape in which gas chromatography was practiced. It took the chromatographic community just a few years to convert from packed columns to capillary columns. Instrumentation and accessories specifically designed for capillary column use came onto the market. This writer had great hopes that the revolution in capillary column GC would be mirrored in the development of instrumentation for Two‐Dimensional Gas Chromatography. This never materialized. On the contrary, tentative steps taken by a few manufacturers and suppliers of chromatographic equipment fizzled out. It was perhaps the introduction of relatively inexpensive and user friendly GC/MS instrumentation, in combination with nearly indestructible fused silica capillary columns that took away the incentive to develop commercially viable Two‐Dimensional Gas Chromatography. Much of the thinking went like this: why insist on good chromatography if mass spectrometry can do the job without the need of complete separation. Some progress in the further development of conventional Two‐Dimensional Gas Chromatography has certainly been made over the last 20 years but there has not been a great deal of excitement. Applications have also been relatively sparse and they are limited to just a few areas. Science does not remain static and chromatography is no exception. Progress in gas chromatography is driven by new technology and ideas. Substantial improvements in two‐dimensional GC were not forthcoming until Phillips and his research group introduced and implemented an entirely new form of Two‐Dimensional Gas Chromatography, called comprehensive GC×GC. This breakthrough occurred only in 1991 [2]. It does take some time before scientists change attitudes and habits. There is always a time lag between the introduction of new technology and its general acceptance. The public's attitude toward comprehensive Two‐Dimensional Gas Chromatography is probably no exception. The number of scientists who are actively pursuing this new branch of gas chromatography is still very small. It is often a single individual who carries the torch. J.B. Phillips' name is synonymous with comprehensive Two‐Dimensional Gas Chromatography. He is not only its inventor and proponent but his fertile mind has initiated research in other related areas. Sadly, he passed aware shortly before this review was written. This contribution is dedicated to his memory. 相似文献
6.
The chemometric method referred to as the generalized rank annihilation method (GRAM) is used to improve the precision, accuracy, and resolution of comprehensive two‐dimensional gas chromatography (GC×GC) data. Because GC×GC signals follow a bilinear structure, GC×GC signals can be readily extracted from noise by chemometric techniques such as GRAM. This resulting improvement in signal‐to‐noise ratio (S/N) and detectability is referred to as bilinear signal enhancement. Here, GRAM uses bilinear signal enhancement on both resolved and unresolved GC×GC peaks that initially have a low S/N in the original GC×GC data. In this work, the chemometric method of GRAM is compared to two traditional peak integration methods for quantifying GC×GC analyte signals. One integration method uses a threshold to determine the signal of a peak of interest. With this integration method only those data points above the limit of detection and within a selected area are integrated to produce the total analyte signal for calibration and quantification. The other integration method evaluated did not employ a threshold, and simply summed all the data points in a selected region to obtain a total analyte signal. Substantial improvements in quantification precision, accuracy, and limit of detection are obtained by using GRAM, as compared to when either peak integration method is applied. In addition, the GRAM results are found to be more accurate than results obtained by peak integration, because GRAM more effectively corrects for the slight baseline offset remaining after the background subtraction of data. In the case of a 2.7‐ppm propylbenzene synthetic sample the quantification result with GRAM is 2.6 times more precise and 4.2 times more accurate than the integration method without a threshold, and 18 times more accurate than the integration method with a threshold. The limit of detection for propylbenzene was 0.6 ppm (parts per million by mass) using GRAM, without implementing any sample preconcentration prior to injection. GRAM is also demonstrated as a means to resolve overlapped signals, while enhancing the S/N. Four alkyl benzene signals of low S/N which were not resolved by GC×GC are mathematically resolved and quantified. 相似文献
7.
Glenn S. Frysinger Richard B. Gaines Edward B. Ledford 《Journal of separation science》1999,22(4):195-200
Comprehensive two-dimensional gas chromatography (GC×GC) has been applied to the quantitative analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), and all heavier aromatic compounds in gasoline. The two-dimensional chromatographic separation used volatility selection on the first-dimension column and polarity selection on the second-dimension column. In the resulting GC×GC chromatogram, aromatic species were resolved from other compound classes. Moreover, structurally related aromatics were grouped in a manner that facilitated identification and integration. The response of a flame ionization detector to each major aromatic group in gasoline was calibrated using internal standards. Quantitation produced results directly comparable with ASTM standard methods. The present GC×GC method can be expanded to analyze other gasoline components. 相似文献
8.
A jet of cool gas is used to locally cool a section of modulator tube in the presence of the stirred oven bath of a GC×GC instrument. Local cooling decouples the temperature of the modulator tube from that of the first dimension column, which was 100 meters long. Overall resolution of the GC×GC experiment was improved as a result. Another consequence of the jet‐cooled thermal modulation structure is the elimination of moving parts in the GC oven. By pulsing cold and hot jets of gas onto a modulator tube with solenoid valves, two stage thermal modulation can be obtained without the complexity of moving parts in the vicinity of the capillary columns. 相似文献
9.
Comprehensive two-dimensional gas chromatography coupled with mass spectrometric detection (GC × GC/MS) is a three-dimensional analytical method. In its application to petroleum analysis, the high peak capacity of GC × GC produced chromatographic resolution of over 750 peaks from a marine diesel fuel. The MS detector provided a full-scan mass spectrum for each resolved peak. The integration of an MS detector with GC × GC provides increased capability to identify minor components, determine members of homologous series, and characterize ordered peak patterns of related components that are visible in the GC × GC chromatogram. 相似文献
10.
Comprehensive two‐dimensional gas chromatography (GC×GC) has been applied to the quantitation of oxygenates in reformulated gasoline. Target oxygenates were C1–C4 alcohols, tert‐pentanol, methyl tert‐butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert‐butyl ether (ETBE), and tert‐amyl methyl ether (TAME). These were separated from the gasoline matrix using a volatility‐based selectivity in the first chromatographic dimension, followed by a mixed‐phase polarity/shape selectivity in the second dimension. The high resolving power of this stationary phase combination completely separated all oxygenates except DIPE, ETBE, and TAME, which exhibited coelution with other nonpolar gasoline components. Oxygenates quantitation was achieved with the use of an internal standard, an FID detector, and calibration curves. Quantitation results are in good agreement with ASTM and EPA standard methods. When coupled with our previous method for BTEX and aromatics, a single GC×GC method can now quantitate MTBE, alcohols, BTEX, and aromatics in a one‐hour analysis. 相似文献
11.
Russell M. Kinghorn Philip J. Marriott Peter A. Dawes 《Journal of separation science》2000,23(3):245-252
Comprehensive gas chromatography is the realization of true continuous multidimensional (dual column) gas chromatography. The key requirement in the comprehensive GC experiment is that the second dimension analysis is completed in a rapid time‐frame compared to the elution of components in the first dimension, and that the two coupled dimensions represent ‘orthogonal’ analyses towards the analytes to be separated. The former normally necessitates pulsing of contiguous segments of each chromatographic band from the first to the second dimensions. The two dimensions should be in fluid communication. The comprehensive GC×GC experiment passes all the column flow from the first column to the second column, leading to no sample loss, but this also requires a suitable method for time‐ or zone‐compression of the band to be pulsed to the second column. The final pulse should be narrow, and should be delivered to the second column quickly. A simple procedure can achieve this using the cryogenic modulator that has been recently described by this group. The system uses a cryogenic trap which can be moved away from the cooled zone of the column faster than 10 ms. A fast‐acting pneumatic ram achieves this performance. The cooled column heats up to the prevailing oven temperature within 10–15 ms. Molecules as volatile as C5 alkanes or small aromatics will be fully retained by the trap within the period of modulation used for GC×GC. The technique is simple to implement and requires no special column connections. Using a gas chromatograph which allows control of external events and can acquire from a detector at 50 Hz or faster, and a timing controller for modulation, the comprehensive result can easily and effectively be achieved. 相似文献
12.
13.
John B. Phillips Richard B. Gaines Jan Blomberg Frans W. M. van der Wielen Jean-Marie Dimandja Vaughn Green James Granger Don Patterson Laell Racovalis Henk-Jan de Geus Jacob de Boer Peter Haglund John Lipsky Veena Sinha Edward B. Ledford 《Journal of separation science》1999,22(1):3-10
In comprehensive two-dimensional gas chromatography (GC×GC), two capillary columns are connected in series through an interface known as a “thermal modulator”. This device transforms effluent from the first capillary column into a series of sharp injection-like chemical pulses suitable for high-speed chromatography on the second column. Dramatic increases in the resolving power, sensitivity, and speed of the gas chromatograph result. This paper describes the development of a robust and reliable thermal modulator for GC×GC. 相似文献
14.
The need for two‐dimensional gas chromatography is justified by the extent of peak overlap in one‐dimensional gas chromatograms (GCs) of complex mixtures. Such overlap was predicted long ago by statistical‐overlap theory (SOT). In this paper, SOT is conceptually reviewed and its predictions are shown to be quantitatively accurate. GCs of complex mixtures of polychlorinated biphenyls, pyridine‐ and nitrogen‐containing polynuclear aromatic hydrocarbons, tetrachlorodibenzo‐p‐dioxins and dibenzofurans, fatty acid methyl esters, flavors and fragrances, and naphtha were simulated by commercial GC software on DB‐1, DB‐5, and Stabilwax stationary phases. The numbers of peak maxima in the GCs agreed with predictions of SOT, when the interval of time between successive peaks of pure compounds was described by Poisson statistics. This agreement was realized even though the time intervals actually are deterministic, not statistical. In addition, the numbers of mixture components were predicted with accuracy by regression of peak numbers against SOT. Similar regressions have been reported before, but the theory used here is more sophisticated and its predictions consequently are more accurate. Future directions for finalizing SOT are suggested. 相似文献
15.
Henk‐Jan de Geus Adolf Schelvis Jacob de Boer Udo A. Th. Brinkman 《Journal of separation science》2000,23(3):189-196
In comprehensive two‐dimensional gas chromatography, two individual separations are coupled by means of a rotating thermal desorption modulator interface. The injection pulse introduced via the interface onto the second column should be as short as possible. Parameters affecting the modulator operation are studied. In the set‐up used in this study, the temperature of the second column can be programmed independently from that of the first column. Optimization of the second‐dimension separation to minimize peak broadening and maximize resolution is discussed and an elegant approach to determine second‐dimension retention times using a non‐constant modulation frequency is demonstrated. The high separation power of the comprehensive system is demonstrated by the analysis of technical and biota samples containing chlorinated biphenyls and toxaphene. 相似文献
16.
Hydrodistilled volatile oils from crushed dry stems, leaves, and roots of Prangos latiloba Korov. (Umbelliferae) growing wild in Sabzevar (Iran) were analyzed by GC and GC/MS. Eight compounds constituting 84.72% of stem oil, twelve compounds
constituting 95.39% of leaf oil, and nine compounds constituting 88.73% of root oil have been identified. The main components
of stem oil were γ-cadinene (30.39%), α-pinene (25.47%), and sabinene (12.55%). The main components of leaf oil were germacrene
D (27.79%), α-pinene (17.81%), β-caryophyllene (12.75%), and β-pinene (11.23%). The main components of root oil were spathulenol
(29.5%), 1,8-cineol (19.42%), p-cymene (17.03%), and α-bisabolol (15.33%).
__________
Published in Kimiya Prirodnikh Soedinenii, No. 5, pp. 443–444, September–October, 2005. 相似文献
17.
Jan Blomberg Peter J. Schoenmakers Jan Beens Robert Tijssen 《Journal of separation science》1997,20(10):539-544
In general, petrochemical products contain only a limited number of chemical classes of compounds (sample dimensionality). The enormous number of individual components within these classes, however, soon puts limitations upon a single chromatographic technique when it comes to adequate characterization of these products. Comprehensive two-dimensional gas chromatography (GC×GC) clearly opens the possibility of estimating the composition of hydrocarbon mixtures in a far more detailed fashion than hitherto possible. Although the emphasis of papers of GCxGC thus far almost exclusively applies to the unsurpassed peak-capacity, in the oil industry there is a need for characterization, rather than for analyzing all the individual compounds. In principle a GCxGC system can provide an almost perfect match between its intrinsic properties and the dimensionality of oil samples. To establish the applicability of GCxGC towards petrochemical analytical challenges, a commercially aavailable prototype instrument was subjected to an exhaustive characterization of a typical hydrocarbon precess stream and a fast characterization of a light gas oil. Although there are no fundamental limitations towards the quantitative aspects of a GCxGC system, this paper confines itself to qualitative results only. Quantitative aspects of GCxGC will be published in a forthcoming paper. 相似文献
18.
MinMinLIANG MeiLingQI RuoNongFU 《中国化学快报》2005,16(5):659-662
We have investigated the use of flash evaporation, headspace solid-phase microextraction (HS-SPME) and steam distillation (SD) as sample concentration and preparation techniques for the analysis of volatile constituents present in Houttuynia cordata Thunb. The samples were analyzed by gas chromatography (GC) and identified by mass spectrometry (MS). Comparison studies were performed. It was found that the results obtained between Headspace solid-phase microextraction HS-SPME and SD techniques were in good agreement, Seventy-nine compounds in Houlluynia cordata Thunh were identified by MS. In flash evaporation, thirty-nine compounds were identified. Discrimination in the response for many constituents studied was not observed, which can be clearly observed in SD and HS-SPME techniques. As a conclusion, HS-SPME is a powerful tool for determining the volatile constitutes present in the Houttuynia cordata. 相似文献
19.
全二维气相色谱/飞行时间质谱法快速定性分析飞灰样品中的二噁英 总被引:2,自引:0,他引:2
建立了全二维气相色谱/飞行时间质谱法 (GC×GC-TOFMS) 快速定性分析飞灰样品中17种二(噁)英的方法.实验证明,采用GC×GC二维特征谱图、TOFMS谱图库检索(自建谱库和NIST库)以及丰度比的定性手段,能在42.5 min内快速分离和定性17种二(噁)英的同分异构体.本方法对大于 0.5 pg/μL (TCDD) 的样品有较好的灵敏度.因此,在二(噁)英分析领域,GC×GC/TOFMS技术可以作为高分辨气相色谱/质谱(HRGC/HRMS)技术的补充和替代. 相似文献
20.
韭菜挥发油主要成份的气相色谱/质谱分析 总被引:12,自引:0,他引:12
韭菜是我国最常见的蔬菜之一,有特别的嗅味和很高的药用价值,本文用气相色谱和质谱联用的方法分析了韭菜挥发油中的主要成份,检出了二甲基二硫醚,甲基丙烯基二硫醚和二丙烯基三硫醚等23种化合物。 相似文献