首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6FDA-pMDA polyimide membranes were implanted with 140 keV N+ ions to fluences between 2 × 1014 and 5 × 1015 cm−2. Variable energy positron annihilation spectra were taken and spectral features compared to previously reported changes in gas permeability and permselectivity of these membranes as a function of ion fluence. Positron data corroborate the explanation of these changes in terms of molecular damage caused by the implant: for fluences up to about 1 × 1015 cm−2, the concentration of irradiation-induced defects merely increases with implant fluence; while fluences exceeding this threshold value create a second type of positron annihilation site, thereby marking a distinct change in the structure of the polymer, which is responsible for the vast improvement of gas permselectivity data found at the same threshold fluence. PACS codes: 78.70.Bj—positron annihilation; 61.82.Pv—polymers, organic compounds; 61.72.Ww—doping and impurity implantation. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2413–2421, 1998  相似文献   

2.
3.
Polymers including chromophores, which can be switched by light, have been studied extensively during the last years due to a host of potential applications which arise from the marked changes in physical properties on switching. Even though there is clear evidence that the free volume has a significant influence on the isomerization kinetics, the question of free volume changes on switching was only addressed recently. Using a pulsed low‐energy positron beam the ortho‐positronium lifetime τ3 was taken as a very sensitive free volume probe, and no change in free volume was detected on isomerization in an azobenzene‐polymethylmethacrylate (PMMA) copolymer containing about 8 wt % of the azobenzene moiety. Here, we report for the first time on free volume changes in an azobenzene‐PMMA blend with an azobenzene moiety concentration as high as 40 wt %. Using the same pulsed low‐energy positron beam, small but significant changes of τ3 were observed between the structurally relaxed dark and the UV‐illuminated states suggesting a decrease in free volume of the order of 10%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

4.
Ion beam irradiation has been widely used to modify the structure and properties of membrane surface layers. In this study, the gas permeability and selectivity of an asymmetric polyimide membrane modified by He ion irradiation were investigated using a high vacuum apparatus equipped with a Baratron absolute pressure gauge at 76 cmHg and 35 °C. Specifically, we estimated the effects of the gas diffusion and solubility on the gas permeation properties of the asymmetric membranes with the carbonized skin layer prepared by ion irradiation. The asymmetric polyimide membranes were prepared by a dry–wet phase inversion process, and the surface skin layer on the membrane was irradiated by He ions at fluences of 1 × 1015 to 5 × 1015 ions/cm2 at 50 keV. The increase in the gas permeability of the He+‐irradiated asymmetric polyimide membrane is entirely due to an increase in the gas diffusion, and the gas selectivity increases of the membranes were responsible for the high gas diffusion selectivities. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 262–269, 2007.  相似文献   

5.
The toughness of cyanate ester (CE) resin matrix improves significantly with the addition of carboxyl‐terminated butadiene‐acrylonitrile rubber (CTBN). The curing behavior of the system was studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The results show that carboxyl groups on the CTBN chain have a slight activation effect on the CE curing reaction at the beginning of the curing process. Phase separation was found to be the main toughening mechanism for CE/CTBN composites. The existence of macro‐size pores induced by the decomposition of a small amount of the low weight molecular part of CTBN might be another toughening mechanism. It is confirmed that positron annihilation lifetime spectroscopy (PALS) is still valid in such a system where macropores filled with gas molecules exist. When a high weight percentage of CTBN (>8%) was added to CE, free‐positron annihilation was found to be the dominant annihilation process in the macropores. For CTBN weight percentage higher than 8%, the contribution of ortho‐positronium (o‐Ps) annihilation in the macropores to τ3 and I3 was found to be insignificant. It is effective to use PALS as a probe of free‐volume properties in such systems by determining the changes in the τ3 and I3 of the composite. The compatibility and interfacial adhesion of the composites can be estimated from the changes in the free‐volume properties of the composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We report a new result on positron annihilation studies in acid- and cation-neutralized (Li+, Na+, K+, Rb+, Cs+, UO22+, Ni2+) Nafion membranes using positron lifetime and Doppler-broadened annihilation radiation (DBAR) measurements. The free-volume structure is characterized using a simple quantum mechanical model of positronium (Ps) in a spherical well. Our studies indicate that formation and expansion of clusters is always associated with a change in free-volume structure resulting in smaller free-volume holes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 771–776, 1997  相似文献   

7.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

8.
Variation of free‐volume parameters—average radius size, number concentration, and size distribution—of a polyacrylamide (PAAm) gel containing 4 mol % carboxylate anions is studied during a volume phase transition (VPT) caused by a change of sodium chloride (NaCl) concentration. A positron annihilation lifetime technique is used for the determination of the free‐volume characteristics. The measurement is performed in an acetone–water 3 : 2 (v/v) [0.27 : 0.73 (mol/mol)] mixed solvent at 20°C, and the free‐volume parameters deduced from the analysis of a positron annihilation curve are utilized. An average free‐volume size of the swollen PAAm gel, ∼ 0.32 nm in radius, almost agrees with that of the mixed solvent for a corresponding salt concentration, while the size of the collapsed gel, which is ∼ 0.28 nm in radius, is smaller than that of the mixed solvent. The results for the collapsed gel indicate that the hydrogen bond plays a significant role in the nanoscopic environment. The radius of the free‐volume of the swollen PAAm gel seems to be influenced by the composition between acetone and water. An inhomogeneity of the nanoscopic structure inside the PAAm gels is discussed in terms of a dispersion of a size distribution of the free‐volume. It is concluded that a change of the nanoscopic environment of the PAAm gel during the VPT can be monitored through the free‐volume parameters obtained by the positron annihilation lifetime technique. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2634–2641, 1999  相似文献   

9.
Positron annihilation lifetime measurements are reported for four monodisperse polystyrenes with molar mass M = 4,000, 9,200, 25,000, and 400,000. The temperature dependences of orthopositronium (o-Ps) lifetime (τ3) and intensity (I3) were measured from 5°C to Tg + 30°C for each sample. From these data, the free volume hole size, 〈vf3)〉, and fractional free volume hps=CI3vf3)〉 were calculated. The temperature dependences of τ3, 〈vf3)〉 and hps show a discrete change in slope at an effective glass transition temperature, Tg,ps, which is measurably below the conventional bulk Tg. This suggests that τ3 is sensitive to large holes which retain their liquid-like mobility in the glassy state. Good agreement was found for T > hg,ps between hps and the theoretical free volume fraction hth deduced from experimental P-V-T data for polystyrene using the statistical mechanical theory of Simha and Somcynsky. Below Tg,ps, deviations between hps and hth are observed, hps falling increasingly below hth as temperature decreases. Whereas hps and hth depend strongly on M in the melt, each essentially independent of M in the glass. A free volume quantity, computed from the bulk volume, which is in good numerical agreement with the Simha-Somcynsky h-function in the melt, gives improved agreement with hps in the glassy state. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The photodegradation of an amine‐cured epoxy coating after exposure to accelerated UV‐340 and UV‐313 irradiation was investigated with an atomic‐level technique, positron annihilation spectroscopy (PAS), which detected and characterized the free volumes and defects as a function of the depth. Significant changes in the subnanometer defect parameters S and W were observed as a function of the exposure time near the surface. This was interpreted as due to a loss of the free volume and hole fraction resulting from photodegradation. A dead layer near the surface, resulting from UV irradiation from the surface up to a thickness of 0.4 μm, at which there was nearly no positronium formation, was observed. Correlations between physical defects from PAS in terms of the free volumes and chemical defects from electron spin resonance spectroscopy in terms of free radicals and chemical structural changes measured by ultraviolet–visible and Fourier transform infrared spectroscopy were established. A high sensitivity of PAS for detecting the early stage of degradation, on the order of hours for UV‐313 and on the order of days for UV‐340 irradiation, was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2441–2459, 2004  相似文献   

11.
The free volume holes of a shape memory polymer have been analyzed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyze shape recovery and free volume hole sizes in gamma‐irradiated polycyclooctene (PCO) samples, as a noncytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma‐irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open possibilities for the design and control of the macroscopic response. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1080–1088  相似文献   

12.
Eudragit® L 30D‐55 films containing diclofenac sodium in different concentrations (0%, 1%, and 5%) were studied by conventional physicochemical methods and positron annihilation spectroscopy. Diclofenac sodium was found to change the properties of the film formed significantly. Positron annihilation spectroscopy was applied to track the Eudragit–diclofenac interaction. The presence of diclofenac initially led to significant distortion of the structure of the pure Eudragit film. However, during storage (17°C, 65% relative humidity), the distorted structure relaxed because of water uptake from the air. At the end of the storage period, the free‐volume size was almost the same in all films. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Free volume properties of a series of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) membranes, which were produced by various nonisothermal crystallization processes (rapid‐, step‐, and slow‐cooling processes), were investigated using positron annihilation lifetime (PAL) spectroscopy over a temperature range of 25–90 °C. From the annihilation lifetime parameters, the temperature dependence of free volume size, amount, size distribution, and fractional free volume and thermal expansion properties of free volume were discussed. A model which assumed that amorphous phase was subdivided into mobile and rigid amorphous fractions (MAF and RAF) in the semicrystalline polymer was considered to interpret the temperature dependence of those free volume properties. Morphological observation of the semicrystalline polymer by small‐angle X‐ray scattering (SAXS) indicated that the rapid‐cooled (cold‐crystallized) membranes showed a much thinner thickness of the repeating lamellar/amorphous layers and most likely higher amount of RAF, which restrained the chain motion, than the step‐ and slow‐cooled (melt‐crystallized) membranes. The difference of free volume properties among various PHBV membranes was created according to the crystalline structure of the polymer from different thermal history. The polymer crystallized with slower cooling rate induced higher crystallinity and resulted in less free volume amount and lower fractional free volume. In addition, the thermal expansion coefficients of free volume size were affected by the crystallization rate of PHBV polymer. Larger distribution of the free volume size of melt‐crystallized membranes was observed as a result of the bimodal distribution of the lamellar periodicity and less amount of RAF than that of the cold‐crystallized membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 855–865, 2009  相似文献   

14.
The free volume behavior of a thermoplastic polyesterurethane (TPU) versus temperature is investigated by positron annihilation lifetime spectroscopy and dilatometry. A discrepancy with the free volume predicted by the lattice‐hole theory is found. The agreement is restored by assuming anisotropic expansion of the free volume holes, which in fact results in expansion mainly in two dimensions. This finding is perfectly compatible with a polymer structure based on rheological, thermal, and TEM data which envisage TPU as formed by short soft segments limited in their movements by chain connectivity and confined by physical crosslinks due to the hard segments. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2104–2109  相似文献   

15.
The photo‐degradation of polymer coating systems due to irradiation by UV and Xenon light sources is studied using positron annihilation spectroscopy and electron spin resonance (ESR). Doppler broadened spectra of positron annihilation, as a function of slow positron implantation energy and ESR spectra, are measured in two types of polyurethane which were exposed, ex situ, to UV irradiation for up to 800 h. The UV irradiation systematically decreases the S parameter as a function of exposure duration and increases the ESR signals. Thus, significant S parameter decrease is correlated with the ESR signal increase resulting from photo‐degradation of polymers due to UV irradiation. Parallel in situ positron annihilation and ESR experiments are performed as a function of Xenon light exposure for up to 100 min. These results show that the photo‐degradation of the polyurethane coatings involves initial free‐radical formation, which is correlated with the subnanometer defects detected by positron annihilation spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1289–1305, 1999  相似文献   

16.
The effect of physical aging on the gas permeability, fractional free volume (FFV), and positron annihilation lifetime spectroscopy (PALS) parameters of dense, isotropic poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) films synthesized with TaCl5 and NbCl5 was characterized. As‐cast films were soaked in methanol until an equilibrium amount of methanol was absorbed by the polymer. When the films were removed from methanol, film thickness initially decreased rapidly and was almost constant after 70 h in air for both catalysts. This timescale was much longer than the timescale for complete methanol desorption (ca. 5 h). From the film‐thickness data, the reduction in FFV with time was estimated. For samples prepared with either catalyst, the kinetics of FFV reduction were well‐described by a simple model based on the notion either that free‐volume elements diffuse to the surface of the polymer film and are subsequently eliminated from the sample or that lattice contraction controls polymer densification. Methane permeability decreased rapidly during the first 70 h, which was the same timescale for the thickness change. The decrease in methane permeability was smaller in films prepared with NbCl5 than with TaCl5. The logarithm of methane permeability decreased linearly as reciprocal FFV increased, in accordance with free‐volume theory. The PALS results indicate that the concentration of larger free‐volume elements (as indicated by the intensity I4) decreased with aging time and that the other PALS parameters were not strongly influenced by aging. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1222–1239, 2000  相似文献   

17.
Positron annihilation lifetime (PAL) spectroscopy has been employed to study subnanometer hole properties in polysulfone (PSF). In this study, hole properties of size, fraction, and distribution of PSF exposed to CO2 are reported. In the PSF/CO2 system, the hole size and fraction significantly increase and the free-volume distribution broadens as a function of CO2 pressure in the range of 0–1000 psi. Hysteresis in hole properties is observed during CO2 sorption/desorption cycle. The high sensitivity of PAL results due to CO2 exposure in PSF is explained in terms of the microstructural changes in the polymer matrix, i.e., filling penetrant and plasticization, gas hydrostatic pressure effect, and creation of free volumes and holes. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3049–3056, 1998  相似文献   

18.
Free‐volume properties, size and distribution, in amorphous polystyrene exposed to CO2 gases have been measured as a function of pressure to 800 psi (5.5 MPa), of time, and of temperature using positron annihilation lifetime spectroscopy. The free volume increases significantly and its distribution broadens as a function of pressure. The free volume relaxes as a function of time with a characteristic time of 15 h, and 5.7 h for 400, and 800 psi, respectively, after depressurizing under vacuum. A portion of free volume created by CO2 exposure remains permanently in the polymer after CO2 exposure. The glass transition temperature decreases significantly as a function of CO2 pressure from the free‐volume data and is compared with the differential scanning calorimeter results. The observed free‐volume variations as a function of pressure, time, and temperature are discussed in terms of hole expansion, creation, free‐volume relaxation, plasticization, and hole filling in amorphous polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 388–405, 2008  相似文献   

19.
Deterioration of a polyurethane coating by Florida natural environments as a function of time up to 16 weeks was studied by positron annihilation spectroscopy. Doppler broadening energy spectroscopy (DBES) of annihilation irradiation and positron annihilation lifetime (PAL) were measured as a function of incident positron energy (0–30 keV). A significant decrease in the S‐defect parameter from DBES and the intensity of orthopositronium from PAL was observed as a function of weathering time. This is interpreted as a loss of free volume and holes as a result of the weathering process. The gloss and surface morphology in the same system were measured by glossimetry and atomic force microscopy (AFM), respectively. The gloss decreased and surface roughness increased as a function of weathering time. The AFM images showed a new feature of a spherically coagulated microstructure on the surface after weathering. Direct correlations between the decrease in gloss and the increase in roughness as well as the decrease in the S‐defect parameter from the DBES data and in the free volume from the PAL data were observed. These results were used to discuss the weathering process in terms of chemical and physical changes as a result of photodegradation in protective polymeric systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2290–2301, 2001  相似文献   

20.
Poly(ether‐urethane) (PEU) was irradiated by neutron in different atmospheres. The hydrogen bonding interaction was analyzed by Fourier transform infrared (FTIR), and the microstructure of PEU had been investigated by positron annihilation lifetime spectroscopy (PALS). The gas products were detected by gas chromatography after irradiation. The results demonstrated that the irradiation led to more hydrogen bonded carbonyl in PEU, smaller relative free volume fraction, and narrower free volume distribution. It suggested that increasing hydrogen bonds would result in the collapse of free volume. The irradiation induced micro‐phase merging together and the presence of oxygen would accelerate this tendency, which was revealed by PALS. All the results indicated that the chain relaxation led to more hydrogen bonds, and the hydrogen bonding interaction suppressed the free volume. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 381–388, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号