首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
The oligomerization and polymerization of 1‐pentene using Cp2ZrCl2, Cp2HfCl2, [(CH3)5C5]2ZrCl2, rac‐[C2H4(Ind)2]ZrCl2, [(CH3)2Si(Ind)2]ZrCl2, (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2, Cp2ZrCl{O(Me)CW(CO)5}, Cp2ZrCl(OMe) and methylaluminoxane (MAO) has been studied. The degree of polymerization was highly dependent on the metallocene catalyst. Oligomers ranging from the dimer of 1‐pentene to polymers of poly‐1‐pentene with a molar mass Mw = 149000 g/mol were formed. Cp2ZrCl{O(Me)CW(CO)5} is a new highly active catalyst for the oligomerization of 1‐pentene to low molecular weight products. The activity decreases in the order Cp2ZrCl{O(Me)CW(CO)5} > Cp2ZrCl2 > Cp2ZrCl(OMe). Furthermore, poly‐1‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene were synthesized with (CH3)2Si(2‐methyl‐benz[e]indenyl)2ZrCl2 and methylaluminoxane (MAO) at different temperatures. The temperature dependence of the molar mass can be described by a common exponential decay function irrespective of the investigated monomer.  相似文献   

2.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

3.
A systematic study of the influence of the α‐olefin size, the catalyst stereospecificity and the reaction temperature was done on the catalytic activity and tacticity of poly‐α‐olefins from 1‐hexene to 1‐octadecene. The metallocenes used were rac‐Et[Ind2]ZrCl2 ( 1 ) and Me2C[Cp(9‐Flu)]ZrCl2 ( 2 ) to obtain isotactic and syndiotactic polyolefins. Some catalysts giving atactic polymers were also used in order to study all the possible 13C NMR pentades. Catalytic activities increased and isotacticity and syndiotacticity decreased with temperature, but no real trend was found with the α‐olefin size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4744–4753, 2005  相似文献   

4.
C2‐symmetric group 4 metallocenes based catalysts (rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 (1) , rac‐[CH2(1‐indenyl)2]ZrCl2 (2) and rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]TiCl2 (3) ) are able to copolymerize styrene and 1,3‐butadiene, to give products with high molecular weight. In agreement with symmetry properties of metallocene precatalysts, styrene homosequences are in isotactic arrangements. Full determination of microstructure of copolymers was obtained by 13C NMR and FTIR analysis and it reveals that insertion of butadiene on styrene chain‐end happens prevailingly with 1,4‐trans configuration. In the butadiene homosequences, using zirconocene‐based catalysts, the 1,4‐trans arrangement is favored over 1,4‐cis, but the latter is prevailing in the presence of titanocene (3) . Diad composition analysis of the copolymers makes possible to estimate the reactivity ratios of copolymerization: zirconocenes (1) and (2) produced copolymers having r1 × r2 = 0.5 and 3.0, respectively (where 1 refers to styrene and 2 to butadiene); while titanocene (3) gave tendencially blocky styrene–butadiene copolymers (r1 × r2 = 8.5). The copolymers do not exhibit crystallinity, even when they contain a high molar fraction of styrene. Probably, comonomer homosequences are too short to crystallize (ns = 16, in the copolymer at highest styrene molar fraction). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1476–1487, 2008  相似文献   

5.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

6.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

7.
A series of comb polymers consisting of a methacrylate backbone and poly(2‐ethyl‐2‐oxazoline) (PEtOx) side chains was synthesized by a combination of cationic ring‐opening polymerization and reversible addition–fragmentation chain transfer polymerization. Small‐angle neutron scattering (SANS) studies revealed a transition from an ellipsoidal to a cylindrical conformation in D2O around a backbone degree of polymerization of 30. Comb‐shaped PEtOx has lowered Tg values but a similar elution behavior in liquid chromatography under critical conditions in comparison to its linear analog was observed. The lower critical solution temperature behavior of the polymers was investigated by turbidimetry, dynamic light scattering, transmission electron microscopy, and SANS revealing decreasing Tcp in aqueous solution with increasing molar mass, the presence of very few aggregated structures below Tcp, a contraction of the macromolecules at temperatures 5 °C above Tcp but no severe conformational change of the cylindrical structure. In addition, the phase diagram including cloud point and coexistence curve was developed showing an LCST of 75 °C of the binary mixture poly[oligo(2‐ethyl‐2‐oxazoline)methacrylate]/water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

9.
The kinetics of ethene and propene polymerization at 20–60°C in the presence of the homogeneous catalyst system rac‐Me2Si(2‐methyl‐4‐phenyl‐1‐indenyl)2ZrCl2/methylaluminoxane was investigated by means of stopped‐flow techniques. The specific rate of chain propagation, measured at the very short reaction times typical of this method, turned out to be ≈102 times higher for ethene than for propene; this suggests that diffusion limitations through the poly(ethylene) precipitating at longer reaction times may be responsible for the fact that the two monomers polymerize instead at comparable rates under “standard” conditions. It was also found that the concentration of active sites is significantly lower than the analytical Zr concentration.  相似文献   

10.
11.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

12.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

13.
Propene (P)/4‐methyl‐1‐pentene (Y) copolymers in a wide range of composition were prepared with isospecific single center catalysts, rac‐Et(IndH4)2ZrCl2 ( EBTHI ), rac‐Me2Si(2‐Me‐BenzInd)2ZrCl2 ( MBI ), and rac‐CH2(3‐tBuInd)2ZrCl2 ( TBI ). 13C NMR analysis of copolymers and statistical elaboration of microstructural data at triad level were performed. Unprecedented and surprising results are here reported. Random P/Y copolymers were prepared with the most isospecific catalyst, TBI , that is known to prepare ethene/propene and ethene/4‐methyl‐1‐pentene copolymers with long homosequences of both comonomers, whereas longer homosequences of both comonomers were observed in copolymers from the less enantioselective metallocenes EBTHI and MBI . These findings, which are against what is acknowledged in the field, can pave the way for the preparation on a large scale of random propene‐based copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2575–2585  相似文献   

14.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

15.
Vinylcyclohexane (VCH) was copolymerized with ethene and propene using methylaluminoxane‐activated metallocene catalysts. The catalyst precursor for the ethene copolymerization was rac‐ethylenebis(indenyl)ZrCl2 ( 1 ). Propene copolymerizations were further studied with Cs‐symmetric isopropylidene(cyclopentadienyl)(fluorenyl)ZrCl2 ( 2 ), C1‐symmetric ethylene(1‐indenyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 3 ), and “meso”‐dimethylsilyl[3‐benzylindenyl)(2‐methylbenz[e]indenyl)]ZrCl2 ( 4 ). Catalyst 1 produced a random ethene–VCH copolymer with very high activity and moderate VCH incorporation. The highest comonomer content in the copolymer was 3.5 mol %. Catalysts 1 and 4 produced poly(propene‐co‐vinylcyclohexane) with moderate to good activities [up to 4900 and 15,400 kg of polymer/(mol of catalyst × h) for 1 and 4 , respectively] under similar reaction conditions but with fairly low comonomer contents (up to 1.0 and 2.0% for 1 and 4 , respectively). Catalysts 2 and 3 , both bearing a fluorenyl moiety, gave propene–VCH copolymers with only negligible amounts of the comonomer. The homopolymerization of VCH was performed with 1 as a reference, and low‐molar‐mass isotactic polyvinylcyclohexane with a low activity was obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6569–6574, 2006  相似文献   

16.
Homogeneous tandem catalysis of the bis(diphenylphoshino)amine‐chromium oligomerization catalyst with the metallocenes Ph2C(Cp)(9‐Flu)ZrCl2 and rac‐EtIn2ZrCl2, is discussed. GC, CRYSTAF, and 13C NMR analysis of the products obtained from reactions at constant temperatures show that during tandem catalysis, α‐olefins, mainly 1‐hexene and 1‐octene, are produced from ethylene by the oligomerization catalyst and subsequently built into the polyethylene chain. At 40 °C the Cr/PNP catalyst acts as a tetramerization catalyst while the polymerization catalyst activity is low. Copolymerization of ethylene and the in situ produced α‐olefins have also been carried out by increasing the temperature from 40 °C, where primarily oligomerization takes place, to above 100 °C, where polymerization becomes dominant. The melting temperature of the polymer is dependent on the catalyst and cocatalyst ratios as well as on the temperature gradient followed during the reaction, while the presence of the oligomerization catalyst reduces the activity of the polymerization catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6847–6856, 2006  相似文献   

17.
The Cs‐symmetry hafnium metallocene [(p‐Et3Si)C6H4]2C(2,7‐di‐tert‐BuFlu)(C5H4)Hf(CH3)2 and tetrakis(pentafluorophenyl) borate dimethylanilinium salt ([B(C6F5)4]?[Me2NHPh]+) were used as the catalytic system for the polymerization of higher α‐olefins (from hexene‐1 to hexadecene‐1) in toluene at 0 °C. The evolution of the polymerization was studied regarding the variation of the molecular weight, molecular weight distribution and yield with time. The effect of the monomer structure on the polymerization kinetics was established. The role of trioctylaluminum in accelerating the polymerization was investigated. 13C NMR spectroscopy was used to study the microstructure of the poly(α‐olefins) by the determination of the pentad monomer sequences. The thermal properties of the polymers were obtained by differential scanning calorimetry, DSC. The results were discussed in connection with the polymer microstructure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4314–4325, 2009  相似文献   

18.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

19.
The melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L‐proline (N‐CBz‐Hpr) with cyclic carbonate [trimethylene carbonate (tri‐MC) or tetramethylene carbonate (tetra‐MC)] at a wide range of molar fractions in the feed produced new degradable poly(ester‐carbonate)s. The influence of reaction conditions such as polymerization time and temperature on the yield and inherent viscosity of the copolymers was investigated. The polymerizations were carried out in bulk at 140 °C with 1.5 wt % stannous octoate as a catalyst for 30 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, gel permeation chromatography, and Ubbelohde viscometry. The copolymers synthesized exhibited moderate molecular weights with rather narrow molecular weight distributions. The values of the glass‐transition temperature (Tg) of the copolymers depend on the molar fractions of cyclic carbonate. For the poly(N‐CBz‐Hpr‐co‐tri‐MC) system, with a decreased tri‐MC content from 93 to 16 mol %, the Tg increased from ?10 to 60 °C. Similarly, for the poly(N‐CBz‐Hpr‐co‐tetra‐MC) system, when the tetra‐MC content decreased from 80 to 8 mol %, the Tg increased from ?18 to 52 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐tri‐MC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐tri‐MC)s was evaluated from weight‐loss measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1435–1443, 2003  相似文献   

20.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号