首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modeling of voltage-gated ion-channel proteins is a continuing challenge for force-field calculations because of the diverse range of interactions involved. In particular, current force fields are not parameterized for either ion–amino acid or amino acid–electric field interactions. To address the parameterization of ion–amino acid interactions, we have tested the use of empirical correction terms, derived from ab initio calculations of single amino acids (representing the peptide backbone) interacting with K+ ions. Having demonstrated the utility of such an approach, we then extended the application to the amino acid side chains. The calculation of the interaction of K+ with serine, cysteine, methionine, lysine, arginine, aspartate, histidine (uncharged), tyrosine, tryptophan, and phenylalanine, both completes the parameterization of the molecular environments contained in the amino acids, and allows specific comment on these ion–functional group interactions. The cation–π interactions were of particular interest, given recent proposals in the literature and the fear that force fields would not be able to treat such interactions. We present a comprehensive comparison of the ab initio (DFT [BLYP], 6-311 G**) and force field (CHARMm22.0) assessments of these interactions. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1515–1525, 1998  相似文献   

2.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

3.
Uracil–(H2O)n (n = 1–7) clusters were systemically investigated by ab initio methods and the newly constructed ABEEMσπ/MM fluctuating charge model. Water molecules have been gradually placed in an average plane containing uracil. The geometries of 38 uracil–water complexes were obtained using B3LYP/6-311++G** level optimizations, and the energies were determined at the MP2/6-311++G** level with BSSE corrections. The ABEEMσπ/MM potential model gives reasonable properties of these clusters when comparing with the present ab initio data. For interaction energies, the root mean square deviation is 0.96 kcal/mol, and the linear coefficient reaches 0.997. Furthermore, the ABEEMσπ charges changed when H2O interacted with the uracil molecule, especially at the sites where the hydrogen bond form. These results show that the ABEEMσπ/MM model is fine giving the overall characteristic hydration properties of uracil–water systems in good agreement with the high-level ab initio calculations.  相似文献   

4.
Catalysis by small molecules (≤1000 Da, 10?9 m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation–π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation–π interaction exhibits a typical binding affinity of several kcal mol?1 with substantial directionality. These properties render it attractive as a design element for the development of small‐molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation–π interaction in catalysis.  相似文献   

5.
6.
The structural stabilities of endo and exo conformations of retronecine and heliotridine molecules were analyzed using different ab initio, semiempirical, and molecular mechanics methods. All electron and pseudopotential ab initio calculations at the Hartree-Fock level of theory with 6-31G* and CEP-31G* basis sets provided structures in excellent agreement with available experimental results obtained from X-ray crystal structure and 1H-NMR (nuclear magnetic resonance) studies in D2O solutions. The exo conformations showed a greater stability for both molecules. The most significant difference between the calculations was found in the ring planarity of heliotridine, whose distortion was associated with the interaction between the O(11)H group and the C(1)-C(2) double bond as well as with a hydrogen bond between O(11)H and N(4). The discrepancy between pseudopotential and all-electron optimized geometries was reduced after inclusion of the innermost electrons of C(1), C(2), and N(4) in the core potential calculation. The MNDO, AM1, and PM3 semiempirical results showed poor agreement with experimental data. The five-membered rings were observed to be planar for AM1 and MNDO calculations. The PM3 calculations for exo-retronecine showed a greater stability than the endo conformer, in agreement with ab initio results. A good agreement was observed between MM3 and ab initio geometries, with small differences probably due to hydrogen bonds. While exo-retronecine was calculated to be more stable than the endo conformer, the MM3 calculations suggested that endo-heliotridine was slightly more stable than the exo form. © 1996 by John Wiley & Sons, Inc.  相似文献   

7.
A hybrid statistical physics—quantum‐chemical methodology was implemented to study the water‐assisted intramolecular proton‐transfer processes in 5‐ and 6‐azauracils in aqueous solutions. The solvent effects were included in the model by explicit inclusion of two pairs of water molecules, which model the relevant part of the first hydration shell around the solute. The position of these water molecules was initially estimated by carrying out a classical Metropolis of dilute water solutions of the title compounds and subsequently analyzing solute–solvent intermolecular interactions in the Monte Carlo‐generated configurations. Sequentially to the statistical physics simulation, ab initio quantum mechanical (QM) level of theory was implemented. The effects of the water as solvent (at ab initio QM level) were introduced at two different levels—using solute–solvent clusters (four‐water molecules) and using the same clusters embedded in an external continuum. Full geometry optimizations of these complexes were carried out at MP2/6–31 + G(d, p) and conductor‐polarizable continuum model (C‐PCM)/MP2/6–31 + G(d, p). Single point calculations were performed at CCSD(T)/6–31 + G(d, p)//MP2/6–31 + G(d, p) computational level to obtain more accurate energies. According to our calculations hydrated azauracils should exist in three forms: mainly dioxo form and two hydroxy forms. The calculated proton transfer activation energies for tautomeric reactions of 5‐azauracil and 6‐azauracil show different pictures for these two compounds. According to C‐PCM/MP2/6–31 +G(d, p) data, water‐assisted proton transfer in 5‐azauracil realizes through two parallel reactions: 1,3,5‐triazine‐2,4(1H,3H)‐dione → 6‐hydroxy‐1,3,5‐triazin‐2(1H)‐one and 1,3,5‐triazine‐2,4(1H,3H)‐dione → 4‐hydroxy‐1,3,5‐triazin‐2(1H)‐one. Tautomeric equilibrium in 6‐azauracil in water could occur by two contiguous reactions: 1,2,4‐triazine‐3,5(2H,4H)‐dione → 5‐hydroxy‐1,2,4‐triazin‐3(2H)‐one and 5‐hydroxy‐1,2,4‐triazin‐3(2H)‐one → 3‐hydroxy‐1,2,4‐triazin‐5(2H)‐one. The proton transfer investigated reactions in 5‐ and 6‐azauracils involve concerted atomic movement. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The geometries of molecules H_3AXAH_3(X=O,S,Se and A=C,Si)have been optimizedusing STO-3G ab initio calculations and gradient method and the results are in good agreement withreported experimental values.From the STO-3G optimized geometries,we have also calculated theelectronic structures of these molecules using 4-31G and 6-31G basis sets to obtain the MO energies.atomic net charges and dipole moments.The ionization potentials calculated by 6-31G basis set are ingood agreement with experimental values.  相似文献   

9.
Ab initio molecular orbital calculations were used to study hydrogen bonding interactions and interatomic distances of a number of hydrogen bonded complexes that are germane to biomolecular structure and function. The calculations were carried out at the STO-3G, 3-21G, 6-31G*, and MP2/6-31G* levels (geometries were fully optimized at each level). For anionic species, 6-31 + G* and MP2/6-31 + G* were also used. In some cases, more sophisticated calculations were also carried out. Whenever possible, the corresponding enthalpy, entropy, and free energy of complexation were calculated. The agreement with the limited quantity of experimental data is good. For comparison, we also carried out semiempirical molecular orbital calculations. In general, AM1 and PM3 give lower interaction enthalpies than the best ab initio results. With regard to structural results, AM1 tends to favor bifurcated structures for O? H-O and N? HO types of hydrogen bonds, but not for hydrogen bonds involving O-H? S and S-H? O, where the usual hydrogen bond patterns are observed. Overall, AM1 geometries are in general in poor agreement with ab initio structural results. On the other hand, PM3 gives geometries similar to the ab initio ones. Hence, from the structural point of view PM3 does show some improvement over AM1. Finally, insights into the formation of cyclic or open formate–water hydrogen bonded complexes are presented. © 1992 by John Wiley & Sons, Inc.  相似文献   

10.
α‐ and β‐mercaptocarboxamides constitute the Zn2+‐ligating entity of several highly potent metalloenzyme inhibitors. We have studied their interaction energies with Zn2+ using the polarizable molecular mechanics procedure SIBFA, and compared them to the corresponding ab initio supermolecule ones. Such validations are necessary to subsequently undertake simulations on complexes of Zn2+–metalloenzymes with inhibitors. If the distributed multipoles and polarizabilities are those derived for each ligand in its appropriate Zn2+‐binding conformation, a close reproduction of the ab initio binding energies is afforded. However, this representation is not tractable upon increasing the size of the ligands and/or to explore a continuum of binding conformations. This makes it necessary to construct the ligands by resorting to a library of constitutive fragments, namely in this case methanethiolate, formamide, and methane covalently connected together. A close reproduction of the ab initio interaction energies is enabled, but only if the ligand–ligand interactions are computed simultaneously with those occurring with Zn2+. This representation accounts for the nonadditivity occurring in the Zn2+–methanethiolate–formamide complex, and justifies the use of the distributed multipoles on the fragments for the construction of larger and flexible molecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1038–1047, 2001  相似文献   

11.
In the crystal structures of the diastereoisomers of O‐tosylcinchonidine [(9R)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (I), and O‐tosylcinchonine [(9S)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (II), both C26H28N2O3S, both molecules are in an anti‐closed conformation and, in each case, the position of the aryl ring of the tosylate system is influenced by an intramolecular C—H...O hydrogen bond. The molecular packing in (I) is influenced by weak intermolecular C—H...O and C—H...π interactions. The crystal structure of (II) features C—H...π interactions and van der Waals forces only. The computational investigations using RHF/6–31G** ab initio and AM1 semi‐empirical methods performed for (I) and (II) and their protonated species show that the conformational and energetic parameters of the molecules are correlated with differences in their reactivity in hydrolysis to the corresponding 9‐epibases.  相似文献   

12.
To promote accuracy of the atom‐bond electronegativity equalization method (ABEEMσπ) fluctuating charge polarizable force fields, and extend it to include all transition metal atoms, a new parameter, the reference charge is set up in the expression of the total energy potential function. We select over 700 model molecules most of which model metalloprotein molecules that come from Protein Data Bank. We set reference charges for different apparent valence states of transition metals and calibrate the parameters of reference charges, valence state electronegativities, and valence state hardnesses for ABEEMσπ through linear regression and least square method. These parameters can be used to calculate charge distributions of metalloproteins containing transition metal atoms (Sc‐Zn, Y‐Cd, and Lu‐Hg). Compared the results of ABEEMσπ charge distributions with those obtained by ab initio method, the quite good linear correlations of the two kinds of charge distributions are shown. The reason why the STO‐3G basis set in Mulliken population analysis for the parameter calibration is specially explained in detail. Furthermore, ABEEMσπ method can also quickly and quite accurately calculate dipole moments of molecules. Molecular dynamics optimizations of five metalloproteins as the examples show that their structures obtained by ABEEMσπ fluctuating charge polarizable force field are very close to the structures optimized by the ab initio MP2/6–311G method. This means that the ABEEMσπ/MM can now be applied to molecular dynamics simulations of systems that contain metalloproteins with good accuracy. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The cation–π interaction is a strong non‐covalent interaction that can be used to prepare high‐strength, stable supramolecular materials. However, because the molecular plane of a cation‐containing group and that of aromatic structure are usually perpendicular when forming a cation–π complex, it is difficult to exploit the cation–π interaction to prepare a 2D self‐assembly in which the molecular plane of all the building blocks are parallel. Herein, a double cation–π‐driven strategy is proposed to overcome this difficulty and have prepared 2D self‐assemblies with long‐range ordered molecular hollow hexagons. The double cation–π interaction makes the 2D self‐assemblies stable. The 2D self‐assemblies are to be an effective carrier that can eliminate metal‐nanoparticle aggregation. Such 2D assembly/palladium nanoparticle hybrids are shown to exhibit recyclability and superior catalytic activity for a model reaction.  相似文献   

14.
Ab initio MP2/6-31G* interaction energies were calculated for more than 80 geometries of stacked cytosine dimer. Diffuse polarization functions were used to properly cover the dispersion energy. The results of ab initio calculations were compared with those obtained from three electrostatic empirical potential models, constructed as the sum of a Lennard-Jones potential (covering dispersion and repulsion contributions) and the electrostatic term. Point charges and point multipoles of the electrostatic term were also obtained at the MP2/6-31G* level of theory. The point charge MEP model (atomic charges derived from molecular electrostatic potential) satisfactorily reproduced the ab initio data. Addition of π-charges localized below and above the cytosine plane did not affect the calculated energies. The model employing the distributed multipole analysis gave worse agreement with the ab initio data than the MEP approach. The MP2 MEP charges were also derived using larger sets of atomic orbitals: cc-pVDZ, 6-311 + G(2d, p), and aug-cc-pVDZ. Differences between interaction energies calculated using these three sets of point charges and the MP2/6-31G* charges were smaller than 0.8 kcal/mol. The correlated ab initio calculations were also compared with the density functional theory (DFT) method. DFT calculations well reproduced the electrostatic part of interaction energy. They also covered some nonelectrostatic short-range effects which were not reproduced by the empirical potentials. The DFT method does not include the dispersion energy. This energy, approximated by an empirical term, was therefore added to the DFT interaction energy. The resulting interaction energy exhibited an artifact secondary minimum for a 3.9-4.0 vertical separation of bases. This defect is inherent in the DFT functionals, because it is not observed for the Hartree-Fock + dispersion interaction energy.© 1996 John Wiley & Sons, Inc.  相似文献   

15.
High‐level ab initio calculations have been carried out using a formamide–benzene model system to evaluate amide–π interactions. The interaction energies were estimated as a sum of the CCSD(T) correlation contribution and the HF energy at the complete basis set limit, for the geometries of the model structures at the energy minimum obtained by potential energy surface (PES) scans. NH/π geometry in a face‐on configuration was found to be the most attractive among the various geometries considered, with interaction energy of ?3.75 kcal/mol. An interaction energy of ?2.08 kcal/mol was calculated for the stacked N/Center type geometry, where the nitrogen atom of formamide points directly toward the center of the aromatic ring. The weakest C?O/π geometry, where a carbonyl oxygen atom points toward the plane of the aromatic ring, was found to have energy minimum at an intermolecular distance of 3.67 Å from the PES, with a repulsive interaction energy less than 1 kcal/mol. However, if there are simultaneous attractive interactions with other parts of the molecule besides the amide group, the weak repulsion could be easily overcome, to give a C?O/π geometry interaction. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

16.
The interaction of Zn2+ with glycine (Gly) in the gas phase is studied by a combination of ab initio and molecular mechanics techniques. The structures and energetics of the various isomers of the Gly–Zn2+ complex are first established via high‐level ab initio calculations. Two low‐energy isomers are characterized: one in which the metal ion interacts with the carboxylate end of zwitterionic glycine, and another in which it chelates the amino nitrogen and the carbonyl oygen of neutral glycine. These calculations lead to the first accurate value of the gas‐phase affinity of glycine for Zn2+. Ab initio calculations were also used to evaluate the performance of various implementations of the SIBFA force field. To assess the extent of transferability of the distributed multipoles and polarizabilities used in the SIBFA computations, two approaches are followed. In the first, approach (a), these quantities are extracted from the ab initio Hartree–Fock wave functions of glycine or its zwitterion in its entirety, and for each individual Zn2+‐binding conformation. In the second, approach (b), they are assembled from the appropriate constitutive fragments, namely methylamine and formic acid for neutral glycine, and protonated methylamine and formate for the zwitterion; they undergo the appropriate vector or matrix rotation to be assembled in the conformation studied. The values of the Zn2+–glycine interaction energies are compared to those resulting from ab initio SCF and MP2 computations using both the all‐electron 6‐311+G(2d,2p) basis set and an effective core potential together with the valence CEP 4‐31G(2d) basis set. Approach (a) values closely reproduce the ab initio ones, both in terms of the total interaction energies and of the individual components. Approach (b) can provide a similar match to ab initio interaction energies as does approach (a), provided that the two constitutive Gly building blocks are considered as separate entities having mutual interactions that are computed simultaneously with those occurring with Zn2+. Thus, the supermolecule is treated as a three‐body rather than a two‐body system. These results indicate that the current implementation of the SIBFA force field should be adequate to undertake accurate studies on zinc metallopeptides. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 963–973, 2000  相似文献   

17.
A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation–water and cation–dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation–peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion–peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ~1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.  相似文献   

18.
19.
The geometries of the 2-aminoethyl cation and the isomeric protonated aziridine have been optimized using ab initio molecular orbital calculations employing the split-valence shell 4-31G basis set. The protonated aziridine is computed to be the more stable ion by 46.5 kcal/mole (4-31G level) and 44.9 kcal/mole (double-zeta basis set). The profile to interconversion is found to have a barrier of less than 15 kcal/mole (relative to the 2-aminoethyl cation) and this profile is compared with those computed for the similar ions XCH2CH 2 + where X=OH, F, SH and Cl.  相似文献   

20.
4‐Phenyl‐4‐thiazoline‐2‐thiol is an active pharmaceutical compound, one of whose activities is as a human indolenamine dioxygenase inhibitor. It has been shown recently that in both the solid state and the gas phase, the thiazolinethione tautomer should be preferred. As part of both research on this lead compound and a medicinal chemistry program, a series of substituted arylthiazolinethiones have been synthesized. The molecular conformations and tautomerism of 4‐(2‐methoxyphenyl)‐4‐thiazoline‐2‐thione and 4‐(4‐methoxyphenyl)‐4‐thiazoline‐2‐thione, both C10H9NOS2, are reported and compared with the geometry deduced from ab initio calculations [PBE/6‐311G(d,p)]. Both the crystal structure analyses and the calculations establish the thione tautomer for the two substituted arylthiazolinethiones. In the crystal structure of the 2‐methoxyphenyl regioisomer, the thiazolinethione unit was disordered over two conformations. Both isomers exhibit similar hydrogen‐bond patterns [R22(8) motif] and form dimers. The crystal packing is further reinforced by short S…S interactions in the 2‐methoxyphenyl isomer. The conformations of the two regioisomers correspond to stable geometries calculated from an ab initio energy‐relaxed scan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号