首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results.  相似文献   

3.
This paper presents for the simple flow over a flat plate the near‐wall profiles of mean flow and turbulence quantities determined with seven eddy‐viscosity turbulence models: the one‐equation turbulence models of Menter and Spalart & Allmaras; the k‐ω two‐equation model proposed by Wilcox and its TNT, BSL and SST variants and the $k-\sqrt{k}L$ two‐equation model. The results are obtained at several Reynolds numbers ranging from 107 to 2.5 × 109. Sets of nine geometrically similar Cartesian grids are adopted to demonstrate that the numerical uncertainty of the finest grid predictions is negligible. The profiles obtained numerically have relevance for the application of so‐called ‘wall function’ boundary conditions. Such wall functions refer to assumptions about the flow in the viscous sublayer and the ‘log law’ region. It turns out that these assumptions are not always satisfied by our results, which are obtained by computing the flow with full near‐wall resolution. In particular, the solution in the ‘log‐law’ region is dependent on the turbulence model and on the Reynolds number, which is a disconcerting result for those who apply wall functions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents manufactured solutions (MSs) for some well‐known eddy‐viscosity turbulence models, viz. the Spalart & Allmaras one‐equation model and the TNT and BSL versions of the two‐equation k–ω model. The manufactured flow solutions apply to two‐dimensional, steady, wall‐bounded, incompressible, turbulent flows. The two velocity components and the pressure are identical for all MSs, but various alternatives are considered for specifying the eddy‐viscosity and other turbulence quantities in the turbulence models. The results obtained for the proposed MSs with a second‐order accurate numerical method show that the MSs for turbulence quantities must be constructed carefully to avoid instabilities in the numerical solutions. This behaviour is model dependent: the performance of the Spalart & Allmaras and k–ω models is significantly affected by the type of MS. In one of the MSs tested, even the two versions of the k–ω model exhibit significant differences in the convergence properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
针对一种射流元件控制通道的复杂结构 ,采用分块对接技术和网格“融合”技术生成计算网格 ,并运用五步显式格式的 Runge-Kutta法和多重网格法对含全 N-S方程、RNG k-ε湍流模型和两层分区壁面模型的流动模型进行数值求解。通过对控制通道内部流动的数值模拟和流场特性分析 ,提出了改进方案  相似文献   

7.
This paper reports the numerical modeling of turbulent flow and convective heat transfer over a wavy wall using a two equations eddy viscosity turbulence model. The wall boundary conditions were applied by using a new zonal modeling strategy based on DNS data and combining the standard k– turbulence model in the outer core flow with a one equation model to resolve the near-wall region.It was found that the two-layer model is successful in capturing most of the important physical features of a turbulent flow over a wavy wall with reasonable amount of memory storage and computer time. The predicted results show the shortcomings of the standard law of the wall for predicting such type of flows and consequently suggest that direct integrations to the wall must be used instead. Moreover, Comparison of the predicted results of a wavy wall with that of a straight channel, indicates that the averaged Nusselt number increases until a critical value is reached where the amplitude wave is increased. However, this heat transfer enhancement is accompanied by an increase in the pressure drop.  相似文献   

8.
This second segment of the two‐part paper systematically examines several turbulence models in the context of two flows, namely a vortex flow created by an inclined jet in crossflow, and the flow field in a diffusing S‐shaped duct. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer k–ε model, Wilcox's k–ω model, Menter's two‐equation shear–stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to three‐dimensional separated flows with streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The paper explores the possibilities that different turbulence closures offer, for in‐depth analysis of a complex flow. The case under investigation is steady, turbulent flow in a pipe with sudden expansion without/with normal‐to‐wall injection through jets. This is a typical geometry where generation of turbulence energy takes place, due to sudden change in boundary conditions. This study is aimed at investigating the capability of a developed computational program by the present authors with three different turbulence models to calculate the mean flow variables. Three two‐equation models are implemented, namely the standard linear k ? ε model, the low Reynolds number k ? ε model and the cubic nonlinear eddy viscosity (NLEV) k ? ε model. The performance of the chosen turbulence models is investigated with regard to the available data in the literature including velocity profiles, turbulent kinetic energy and reattachment position in a pipe expansion. In order to further assess the reliability of the turbulence models, an experimental program was conducted by the present authors also at the fluid mechanics laboratory of Menoufiya University. Preliminary measurements, including the surface pressure along the two walls of the expansion pipe and the pressure drop without and with the presence of different arrangements of wall jets produced by symmetrical or asymmetrical fluid cross‐flow injection, are introduced. The results of the present studies demonstrate the superiority of the cubic NLEV k ? ε model in predicting the flow characteristics over the entire domain. The simple low Reynolds number k ? ε model also gives good prediction, especially when the reattachment point is concerned. The evaluation of the reattachment point and the pressure‐loss coefficient is numerically addressed in the paper using the cubic NLEV k ? ε model. The results show that the injection location can control the performance of the pipe‐expansion system. It is concluded that the introduction of flow injection can increase the energy loss in the pipe expansion. The near‐field turbulence structure is also considered in the present study and it is noticed that the turbulence level is strongly affected by the cross‐flow injection and the jet location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
包芸  习令楚 《力学学报》2020,52(3):656-662
在环境流体力学中,风场是风沙流、风雪流等自然环境特性问题研究的动力源和基础. 通常采用壁湍流模型进行风场大涡模拟(large eddy simulation, LES)计算,但受到计算规模的限制使得 高雷诺数风场的模拟计算难以实现. 并行计算技术是解决大规模高雷诺数风场大涡模拟的关键技术之一. 在不可压湍流风场的LES模拟中,压力泊松方程的并行计算技术是进行规模并行计算的困难点. 根据风场流动模拟计算的特点,采用水平网格等距而垂直于地面网格非等距,在解决规模并行计算中求解压力泊松方程的难点问题时,利用FFT解耦三维泊松方程使其变为垂向的一维三对角方程, 并利用可并行的三对角方程PDD求解技术,可建立三维泊松方程的直接并行求解技术. 结合其它容易并行的动量方程计算,本文建立风场LES模拟的并行直接求解方法(parallel direct method-LES, PDM-LES). 在超级计算机上对新方法进行并行效率测试,并行计算效率达到90${\%}$. 新的方法可用于进行湍流风场大涡模拟的大规模并行计算. 计算结果表明,湍流风场瞬时速度分布近壁面存在条带状的拟序结构,平均场的速度分布符合速度对数律特性,风场湍流特性基本合理.   相似文献   

12.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space‐filling quasi‐direct numerical simulations (QDNS), which sample the response of near‐wall turbulence to large‐scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse‐grid LES, with the equivalent of wall functions supplied by the near‐wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ=4200 and 20000. The total grid point count for the first case is less than half a million and less than 2 million for the second case, with the calculations only requiring a desktop computer. A good agreement with published direct numerical simulation (DNS) is found at Reτ=4200, both in the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near‐wall turbulence levels due to a modulation of near‐wall streaks by large‐scale structures. The trend continues at Reτ=20000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES‐QDNS coupling strategy and subgrid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.  相似文献   

15.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In the current study, the unsteady flow in a centrifugal fan is carried out using Computational Fluid Dynamics calculation based on the Scale Adaptive Simulation (SAS) approach to model the turbulence phenomenon. The SAS concept is based on the introduction of the von Karman length scale into the turbulence scale equation. The information provided by the von Karman length scale allows SAS models to dynamically adjust to resolved structures in an Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulation, which results in a Large Eddy Simulation-like behaviour in unsteady regions of the flow field. At the same time, the model provides standard RANS capabilities in stable flow regions. The introduction of the von Karman length scale is based on the reformulation of Rottas's equation for the integral length scale. To validate the numerical results, the overall performances of the fan and the wall pressure fluctuations computed upon the volute casing surface are compared with the unsteady measured data.  相似文献   

19.
A theoretical method based on mathematical physics formalism that allows transposition of turbulence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses underlying these models are then discussed by reference to physical considerations with emphasis on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical possible applications for illustrating the potentials of these models.   相似文献   

20.
This paper presents the results of measurements and numerical predictions of turbulent cross-flow in a staggered tube bundle. The bundle consists of transverse and longitudinal pitch-to-diameter ratios of 3.8 and 2.1, respectively. The experiments were conducted using a particle image velocimetry technique, in a flow of water in a channel at a Reynolds number of 9300 based on the inlet velocity and the tube diameter. A commercial CFD code, ANSYS CFX V10.0, is used to predict the turbulent flow in the bundle. The steady and isothermal Reynolds–Averaged Navier–Stokes (RANS) equations were used to predict the turbulent flow using each of the following four turbulence models: a k-epsilon, a standard k-omega, a k-omega-based shear stress transport, and an epsilon-based second moment closure. The epsilon-based models used a scalable wall function and the omega-based models used a wall treatment that switches automatically between low-Reynolds and standard wall function formulations.

The experimental results revealed extremely high levels of turbulence production by the normal stresses, as well as regions of negative turbulence production. The convective transport by mean flow and turbulent diffusion were observed to be significantly higher than in classical turbulent boundary layers. As a result, turbulence production is generally not in equilibrium with its dissipation rate. In spite of these characteristics, it was observed that the Reynolds normal stresses approximated from the k-based two-equation models were in a closer agreement with experiments than values obtained from the second moment closure. The results show that none of the turbulence models was able to consistently reproduce the mean and turbulent quantities reasonably well. The omega-based models predicted the mean velocities better in the developing region while the epsilon-based models gave better results in the region where the flow is becoming spatially periodic.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号