首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

2.
Star polymers with reactive isocyanate end groups were prepared via the end capping of hydroxy‐terminated star polyether polyols with toluene diisocyanate (TDI; 80% = 2,4 TDI, 20% = 2,6 TDI). The multifunctional polyols and TDI were reacted in bulk without a catalyst. This procedure was optimal in regard to the product yield, minimizing unfavorable coupling side reactions and avoiding crosslinking reactions. The experimental results were based on theoretical studies of the reaction kinetics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2555–2565, 2000  相似文献   

3.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

4.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

5.
The morphological features of three flexible slabstock polyurethane foams based on varied contents of 2,4 and 2,6 toluene diisocyanate (TDI) isomers are investigated. The three commercially available TDI mixtures, that is, 65:35 2,4/2,6 TDI, 80:20 2,4/2,6 TDI, and 100:0 2,4/2,6 TDI were used. The foams were characterized at different length scales with several techniques. Differences in the cellular structure of the foams were noted with scanning electron microscopy. Small‐angle X‐ray scattering was used to demonstrate that all three foams were microphase‐separated and possessed similar interdomain spacings. Transmission electron microscopy revealed that the aggregation of the urea phase into large urea‐rich regions decreased systematically on increasing the asymmetric TDI isomer content. Fourier transform infrared spectroscopy showed that the level of bidentate hydrogen bonding of the hard segments increased with the 2,6 TDI isomer content. Differential scanning calorimetry and dynamic mechanical analysis (DMA) were used to note changes in the soft‐segment glass‐transition temperature of the foams on varying the diisocyanate ratios and suggested that the perfection of microphase separation was enhanced on increasing the 2,6 TDI isomer content. The preceding observations were used to explain why the foam containing the highest content of the symmetric 2,6 TDI isomer exhibited the highest rubbery storage modulus, as measured by DMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 258–268, 2003  相似文献   

6.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

7.
A calcium salt of mono(hydroxypentyl)phthalate [Ca(HPP)2] was synthesized by the reaction of 1,5‐pentanediol, phthalic anhydride, and calcium acetate. Four different bisureas such as hexamethylene bis(ω,N‐hydroxyethylurea), tolylene 2,4‐bis(ω,N‐hydroxyethylurea), hexamethylene bis(ω,N‐hydroxypropylurea), and tolylene 2,4‐bis(ω,N‐hydroxypropylurea) were prepared by reacting ethanolamine or propanolamine with hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI). Calcium‐containing poly(urethane‐urea)s (PUUs) were synthesized by reacting HMDI or TDI with 1:1 mixtures of Ca(HPP)2 and each of the bisureas with di‐n‐butyltin dilaurate as a catalyst. The PUUs were well characterized by Fourier transform infrared spectroscopy, 1H and 13C NMR, solid‐state 13C–cross‐polarization/magic‐angle spinning NMR, viscosity, solubility, elemental analysis, and X‐ray diffraction studies. Thermal properties of the polymers were also examined with thermogravimetric analyses and differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1809–1819, 2004  相似文献   

8.
Small‐angle X‐ray scattering (SAXS) and differential scattering calorimetry (DSC) were used to demonstrate distinct differences in domain size, phase separation, and hydrogen bonding in a series of segmented urethaneurea elastomers prepared from isocyanate‐terminated prepolymers and aromatic diamine chain extenders. Two types of prepolymers were studied. The first contained a broadly polydisperse high molecular mass oligomer with relatively high levels of free isocyanate monomer. The second type of prepolymer contained low levels of high molecular mass oligomers with mass fractions greater than 90% of the two‐to‐one adduct of toluene diisocyanate (TDI) to polytetramethylene glycol (PTMEG). The mass fraction of the residual unreacted diisocyanate was less than 0.1% in the second type. Two chain extenders, 4,4′‐methylene bis‐(2‐chloroaniline)(Mboca) and 4,4′‐methylene bis‐(3‐chloro‐2,6‐diethylaniline) (MCDEA), were used to convert the prepolymers to poly(urethaneurea) elastomers. Materials prepared from the prepolymers with low oligomer polydispersity exhibited smaller hard segment domains with more ordered morphology, greater phase separation, and more hydrogen bonding than those prepared from prepolymers with high oligomer polydispersity. These tendencies were enhanced in those elastomers prepared by chain extension with MCDEA compared to those made with Mboca. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2586–2600, 1999  相似文献   

9.
Polyurethane elastomers of a controlled molecular architecture were synthesized using a two‐step polymerization technique. The building blocks of the elastomeric materials included urea–urethane prepolymers end‐capped with diisocyanate groups and had an exact number of urea groups at both ends. Two‐dimensional bifurcated hydrogen‐bonding networks incorporating the urea groups were, with differential scanning calorimetric and dynamic mechanical thermal analyzer techniques, responsible for the increase in the glass‐transition temperature (Tg) of the hard block and sharp interface morphology between the pure “hard” domains and pure “soft” domains. The higher extent of the phase separation between the two phases contributed to higher elastic moduli for the hard blocks and higher tensile strength for the elastomeric samples. Higher elongation values were attributed to the liberation of the elastomeric chain ends that otherwise would have been constrained in the interface region. The higher Tg values of the hard blocks corresponded to an increase in the hardness values and a decrease in the tear‐strength values. The increase in the amount of urea groups within the hard segments, as a result of the increased amount of water and blowing catalyst, resulted in elastomeric foams with higher open‐cell content. This resulted in lower resilience values as measured using the pendulum rebound test and was attributed to the ability of the open cells to absorb and dissipate energy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2526–2536, 2002  相似文献   

10.
11.
Starting materials, prepolymers, chain-extended oligomers, and polyurethane network chains were characterized by gel permeation chromatography in order to make clear the change of molecular distribution in the formation of polyurethane networks. The polyurethane networks were prepared from poly(oxypropylene)glycol (PPG 1000, M n = 997, M w/M n = 1.04), 2,4-tolylene diisocyanate, and 1,4-butanediol by the prepolymer method. Polyurethane networks were degraded by the amine degradation method, by which allophanate groups as crosslinking sites were decomposed selectively. The prepolymer had four species. The polydispersity index of the prepolymer (M w/M n) was about 2, that is, the most probable distribution. The product of the chain-extending reaction of prepolymer with BD had five species. The molecular-weight distribution of this product was narrower than that of the prepolymer. The polydispersity of the interstitial chains between crosslinking sites was also narrower than that of the chain-extended product. The polyaddition mechanism in the formation of PPG–TDI–BD polyurethane networks was discussed.  相似文献   

12.
Aliphatic poly(urethane‐amine) (PUA) was synthesized from copolymerization of CO2 and 2‐methylaziridine (MAZ) using Y(CCl3COO)3‐ZnEt2‐glycerine coordination catalyst, the urethane content of PUA was over 80%, and its yield could reach 90%. PUA with molecular weight as high as 31.0 kg/mol was obtained when the copolymerization reaction was carried out in N,N‐dimethylacetamide (DMAc), mainly due to the good solubility of PUA in DMAc. PUA exhibited reversible thermo‐responsive property in deionized water, and the lower critical solution temperature (LCST) was highly sensitive to its urethane content and molecular weight, which was observed in a broad window from 37 to 90 °C. Furthermore, the phase transition behavior could also be controlled by change of pH value. When the pH value of the PUA aqueous solution changed from 9.2 to 13, the LCST value of the solution decreased from 48.4 °C to 30 °C. Therefore, the PUA showed thermo‐ and pH‐ dual responsive performance in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

14.
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003  相似文献   

15.
Hyperbranched aromatic and aliphatic poly(urea‐urethane)s were prepared by the one‐pot method using 2,4‐toluylene diisocyanate (TDI), isophorone diisocyanate, and 2(3‐isocyanatopropyl)cyclohexyl isocyanate as AA* monomers and diethanol amine and diisopropanol amine as B2B* monomers. The characteristics of the resulting polymers were very sensitive to slight changes in the reaction conditions, such as temperature, concentration, and type of catalyst used, as can be seen from the results of gel permeation chromatography and differential scanning calorimetry. The structures were analyzed in detail using 1H and 13C NMR spectroscopy. By using model compounds, the different isomeric structures of the TDI polymers were deduced, their percentages of their linear, terminal, and dendritic subunits were calculated, and their degree of branching (DB) was determined. DB values up to 70% were reached depending on the reaction conditions and stoichiometry of the monomers. The number of terminal groups decreased significantly when dibutylamine was used to stop the reaction instead of B2B*, indicating the presence of a significant number of unreacted isocyanate groups in the hyperbranched product when the polyaddition reaction was stopped. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3062–3081, 2004  相似文献   

16.
A comparative kinetic study of the dibutyltin dilaurate (DBTDL) and 1,4‐diazabicyclo[2,2,2]octane (DABCO) catalyzed reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers (FPEs)—Z‐DOLs and Z‐DOL TXs—of various molecular weights and purity, with 4,4′‐dicyclohexylmethane diisocyanate (H12MDI), isophorone diisocyanate (IPDI) and 2,4‐toluene diisocyanate (TDI) was carried out in different solvents. An analytical method was used to follow the kinetics of the reactions at four different temperatures. The rate of NCO disappearance measured by two independent methods—IR spectroscopy and chemical titration were found to be very close. Straight proportionality between rate constants kcat and catalyst concentration was found. But in some cases for the DBTDL catalyzed reactions effect of catalyst saturation along with appearance of the limiting DBTDL concentration Clim below which the rate of reaction was close to zero were observed. Reactivity of Z‐DOLs in the tin‐catalyzed urethane reactions was found to decrease with their storage time at RT due to the slow hydrolysis of the end  COOR groups impurities, which give the corresponding acids that act as a strong inhibitor of the DBTDL activity. These acid admixtures have no influence on the DABCO catalyzed reactions. For the DBTDL and DABCO catalyzed reactions of Z‐DOLs with IPDI the dependence of effective rate constants keff (where keff = kcat · 0.01/[DBTDL] and catalyst concentration is taken in mol % based on IPDI) on total reagents concentration were found to be described by curves with a maximum. Critical reagents concentration, after which the relationship keff = f (C) changes from proportional to inverse proportional, seems do not substantially depend on the solvent nature. Hydrogenated analog poly(ethylene glycol) MW 400 (PEG‐400) differs greatly from Z‐DOLs: only steady decrease of keff was observed with increase of reagents concentration C from 5 up to 95 wt %. Activation energies for all the studied reactions are within the range of 10.8–16.7 kcal/mol. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2579–2602, 2000  相似文献   

17.
Water‐based polyurethane–urea (WPUU) nanoparticles containing 4,4′‐methylenedi‐p‐phenyl diisocyanate (MDI) and isophorone diisocyanate (IPDI) were synthesized by a stepwise prepolymer mixing process, that is, the consecutive formation of hydroxyl‐terminated and isocyanate‐terminated polyurethane prepolymers. The reaction behavior, chemical structure, and consequent morphology of the polyurethane prepolymers and WPUU were investigated with Fourier transform infrared (FTIR), gel permeation chromatography, and NMR techniques with MDI concentrations ranging from 0 (pure IPDI) to 50% with respect to the total moles of isocyanate. Wide‐angle X‐ray diffraction and differential scanning calorimetry patterns showed that the crystallinity of WPUU, which mostly originated from crystallizable poly(tetramethylene adipate) polyol, was significantly affected by the MDI content. Both the crystallinity and melting temperature of WPUU decreased as the MDI content increased. Deconvoluted relative peak areas of the carbonyl region in the FTIR spectrum revealed that the effect of hydrogen bonding among the hard segments became favorable as the MDI content increased, whereas the hydrogen bonding of the soft segments significantly decreased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4353–4369, 2004  相似文献   

18.
Polyether polyurethane cationomers are prepared using poly (tetramethylene oxide) of molecular weight 2000 as soft segments, N-methyl-diethanolamine as chain extender, glycolic acid as quaternization agent, methyl ethyl ketone as solvent, and three different diisocyanates. The three diisocyanates are 4,4′-diphenylenemethylene diisocyanate (MDI), hexamethylene diisocyanate (HDI), and toluene diisocyanate (TDI). Properties of the films cast from solutions of the three series of ionomers are studied by infrared spectroscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, wide angle x-ray diffraction, and tensile elongation testing. In the un-ionized and ionized systems, the hard segments exhibit disordered and ordered arrangements, respectively. Ionization disrupts the order and produces increased cohesion in the hard domains, which have opposing effects on the tensile elongation properties. In the MDI and TDI systems, cohesion is predominant, leading to an increased tensile strength and modulus and decreased elongation at break. But in the HDI system, the disruption of the order is predominant, leading to decreased tensile strength and only insignificant reduction in the elongation at break. In the TDI system, the tensile strength is rather low, which is attributed to the poor order in the hard domains resulting from the high content of the asymmetric 2,4-isomer of the urethane.  相似文献   

19.
A novel multiblock aromatic–aliphatic copolyester poly(ethylene‐co‐1,6‐hexene terephthalate)‐copoly(1,4‐dioxan‐2‐one) (PEHT‐PPDO) was successfully synthesized via the chain‐extension reaction of dihydroxyl teminated poly(ethylene‐co‐hexane terephthalate) (PEHT‐OH) with dihydroxyl teminated poly(1,4‐dioxan‐2‐one) (PPDO‐OH) prepolymers, using toluene‐2,4‐diisocyanate as a chain extender. To produce PEHT‐OH prepolymer with an appropriate melting point which can match the reaction temperature of PEHT‐OH prepolymer with PPDO‐OH prepolymer, 1,6‐hexanediol was used to disturb the regularity of poly(ethylene terephthalate) segments. The chemical structures and molecular weights of PEHT‐PPDO copolymers were characterized by 1H NMR, FTIR, and GPC. The DSC data showed that PPDO‐OH segments were miscible well with PEHT‐OH segments in amorphous state and that the crystallization of copolyester was predominantly contributed by PPDO segments. The TGA results indicated that the thermal stability of PEHT‐PPDO was improved comparing with PPDO homopolymer. The novel aromatic–aliphatic copolyesters have good mechanical properties and could find applications in the field of biodegradable polymer materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2828–2837, 2010  相似文献   

20.
Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated polycaprolactone (PCL), 1,3-bis-2,2′(2-isocyanatopropyl)benzene (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA were synthesized. Glass transition temperature, Tg, dynamic mechanical relaxation, α, and equilibrium tensile modulus, E′, were measured to compare the two kinds of networks. To explain thermal and mechanical properties of networks, the concept of hard clusters has been introduced. PU networks exhibit a single-phase structure with modulus and Tg dependent on the concentration of elastically active network chains (EANC) per unit volume calculated by considering hard crosslink clusters. The rigidity of the clusters comes from small diisocyanate and trimethylolpropane units connected by urethane bonds. They are embedded in a continuous soft phase of macrodiol urethane. Physical equivalence between several kinds of network models has been demonstrated for full conversion of isocyanate-alcohol reaction. PUA networks exhibit thermodynamically one-phase structures that become a two-phase structure for high molar mass of macrodiol when the molar fraction of isocyanate groups increases. For those networks, the calculated modulus considering clusters based on polyacrylate chains seems to be a good way to approach the experimental value of the equilibrium modulus. For the same molar ratio of OH to NCO groups the range of dynamic moduli is larger for PUA than for PU. This difference can be explained by a different concentration of crosslinks in the networks. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号