首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The phenomenon of vibration localization occurring in a nearly periodic structure was investigated through a statistical energy analysis (SEA) approach. The phenomenon has been examined mostly through a wave propagation approach, where a localization factor was often employed to evaluate the strength of vibration localization. The wave propagation approach properly predicted the factor close to Monte Carlo calculations in nearly periodic structures for both weak and strong couplings. In this analytical study, the localization factor was derived from the SEA approach for a nearly periodic structure monocoupled with a weak coupling. The SEA approach sequentially breaks the structure into two-oscillator blocked substructures and proposes a way of determining the vibration localization factor with equations of energy balance. This article shows that the SEA approach is quite appropriate for calculating the vibration localization factor compared to the wave propagation approach.  相似文献   

2.
The elastic wave localization in disordered periodic piezoelectric rods with initial stress is studied using the transfer matrix and Lyapunov exponent method. The electric field is approximated as quasi-static. The effects of the initial stress on the band gap characteristics are investigated. The numerical calculations of localization factors and localization lengths are performed. It can be observed from the results that the band structures can be tuned by exerting the suitable initial stress. For different values of the piezoelectric rod length and the elastic constant, the band structures and the localization phenomena are very different. Larger disorder degree can lead to more obvious localization phenomenon.  相似文献   

3.
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057).  相似文献   

4.
采用传递矩阵方法,研究了横波(SV波)垂直入射时压电/(弹性/压磁)和(压电/弹性)/压磁两种Fibonacci准周期结构的频带特性,通过计算局部化因子和位移透射系数,数值揭示了此两种Fibonacci准周期结构频带特性的差异以及与相应理想周期结构频带特性的不同,而且表明(压电/弹性)/压磁Fibonacci准周期结构的频带特性与纯弹性材料Fibonacci准周期结构的频带特性是相似的。  相似文献   

5.
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.  相似文献   

6.
The band gaps of a phononic crystal beam with staggered periodic structure are investigated. The periodic system consists of a pure elastic (i.e. PMMA) matrix beam and some piezoelectric (i.e. PZT) patches with coupling between the mechanical–electrical components. The PZT patches connected by negative capacitance circuits are applied to function as the active control system. Based on the condition at the interface between adjacent unit cells, the transfer matrix and localization factor are derived. The influence of the degree of interlacing and negative capacitance circuits are discussed. The numerical results show that another band gap can be generated by the staggered periodic structure of PZT patches. The widths and locations of the band gaps can be changed by the degree of interlacing.  相似文献   

7.
基于弹性波传递矩阵方法,研究了失谐周期结构中弹性波与振动的局部化问题.给出了结构中弹性波传递矩阵的一般表达式,采用奇异值分解方法,分别计算了谐和与失谐周期结构中的局部化因子,并对其进行了分析讨论.对周期结构中波传播与振动局部化的分析方法可用于结构的优化设计.  相似文献   

8.
失谐周期结构中振动局部化问题的研究进展   总被引:18,自引:0,他引:18  
周期结构在工程中有很多应用实例, 其具有频率通带和禁带等特殊力学性质. 失谐可使周期结构的力学特性产生本质变化, 即失谐周期结构中存在振动局部化现象.局部化破坏了周期结构模态的规则性, 在外激励下会使结构某些部位的响应幅值过大, 产生能量积聚, 甚至导致结构发生疲劳破坏. 因此分析失谐周期结构中振动和能量的传播方式与规律具有重要的理论与实际意义, 可以为重要子结构的振动控制和减振设计提供理论依据. 针对一维直线型周期结构、循环周期结构以及二维周期结构等, 综述了其中的振动局部化问题的研究现状,主要集中于力学模型的建立、振动局部化问题的研究内容、分析方法和主要研究结果等, 并提出了值得进一步研究的问题.   相似文献   

9.
In this paper, the propagation and localization of elastic waves in randomly disordered layered three-component phononic crystals with thermal effects are studied. The transfer matrix is obtained by applying the continuity conditions between three consecutive sub-cells. Based on the transfer matrix method and Bloch theory, the expressions of the localization factor and dispersion relation are presented. The relation between the localization factors and dispersion curves is discussed. Numerical simulations are performed to investigate the influences of the incident angle on band structures of ordered phononic crystals. For the randomly disordered ones, disorders of structural thickness ratios and Lamé constants are considered. The incident angles, disorder degrees, thickness ratios, Lamé constants and temperature changes have prominent effects on wave localization phenomena in three-component systems. Furthermore, it can be observed that stopbands locate in very low-frequency regions. The localization factor is an effective way to investigate randomly disordered phononic crystals in which the band structure cannot be described.  相似文献   

10.
The two-dimensional wave propagation and localization in disordered periodic layered 2-2 piezoelectric composite structures are studied by considering the mechanic-electric coupling. The transfer matrix between two consecutive sub-layers is obtained based on the continuity conditions. Regarding the variables of mechanical and electrical fields as the elements of the state vector, the expression of the localization factors in disordered periodic layered piezoelectric composite structures is derived. Numerical results are presented for two cases—disorder of the thickness of the polymers and disorder of the piezoelectric and elastic constants of the piezoelectric ceramics. The results show that due to the piezoelectric effects, the characteristics of the wave localization in disordered periodic layered piezoelectric composite structures are different from those in disordered periodic layered purely elastic ones. The wave localization is strengthened due to the piezoelectricity. And the larger the piezoelectric constant is, the larger the wave localization factors are. It is found that slight disorder in the piezoelectric or elastic constants of the piezoelectric ceramics can lead to more prominent localization phenomenon.  相似文献   

11.
Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps.Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.  相似文献   

12.
The wave propagation in periodic and disordered periodic piezoelectric rods is studied in this paper. The transfer matrix between two consecutive unit cells is obtained according to the continuity conditions. The electromechanical coupling of piezoelectric materials is considered. According to the theory of matrix eigenvalues, the frequency bands in periodic structures are studied. Moreover, by introducing disorder in both the dimensionless length and elastic constants of the piezoelectric ceramics, the wave localization in disordered periodic structures is also studied by using the matrix eigenvalue method and Lyapunov exponent method. It is found that tuned periodic structures have the frequency passbands and stopbands and localization phenomenon can occur in mistuned periodic structures. Furthermore, owing to the effect of piezoelectricity, the frequency regions for waves that cannot propagate through the structures are slightly increased with the increase of the piezoelectric constant.  相似文献   

13.
In this paper,modified two-dimensional periodic lattice materials with local resonance phononic bandgaps are designed and investigated.The design concept isto introduce some auxiliary structures into conventional periodic lattice materials.Elastic wave propagation in this kindof modified two-dimensional lattice materials is studied using a combination of Bloch’s theorem with finite elementmethod.The calculated frequency band structures of illustrative modified square lattice materials reveal the existenceof frequency band gaps in the low frequency region due tothe introduction of the auxiliary structures.The mechanismunderlying the occurrence of these frequency band gaps isthoroughly discussed and natural resonances of the auxiliarystructures are validated to be the origin.The effect of geometric parameters of the auxiliary structures on the width ofthe local resonance phononic band gaps is explored.Finally,a conceptual broadband vibration-insulating structure basedon the modified lattice materials is designed and its capability is demonstrated.The present work is anticipated to beuseful in designing structures which can insulate mechanicalvibrations within desired frequency ranges.  相似文献   

14.
周期波导中弹性波局部化问题的研究   总被引:3,自引:0,他引:3  
基于弹性波传递矩阵方法,对周期波导中弹性波局部化问题进行了分析研究。根据互易性原理和能量地恒定律,给出了结构弹性波传递矩阵的一般表达式。采用两种求解局部化因子的计算方法,分别计算了谐和与失谐周期波导中的局部化因子,并对其进行了分析讨论。本文对周期波导中波传播与振动局部化的分析方法和计算结果可用于结构的优化设计。  相似文献   

15.
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.  相似文献   

16.
In this paper, the stop band properties of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress are studied taking the mechanical and electrical coupling into account. The band gap characteristics for three kinds of lattice arrangements (i.e. sc, bcc and fcc) are investigated by the plane wave expansion (PWE) method. Regarding the variables of mechanical and electrical fields as the elements of the generalized state vector, the expression of the generalized eigenvalue equation for three-dimensional piezoelectric periodic structures is derived. Numerical calculations are performed for the PZT-2/polymer and ZnO/polymer phononic crystals. It can be observed from the results that the fcc lattice is more favorable to create the stop band than the sc and bcc lattices for the piezoelectric phononic crystals, which has also been proved for the pure elastic periodic structures. Compared with the PZT-2/polymer systems, the band gap of the sc lattice for the ZnO/polymer structures is narrower. However, the widths of the bcc and fcc lattices for the ZnO/polymer phononic crystals are much larger than those for the PZT-2/polymer structures. The lattice arrangements and the piezoelectricity have remarkable influences on the stop band behaviors.  相似文献   

17.
Three-dimensional periodic structures have many applications in acoustics and their properties are strongly related to structural details. Here we demonstrate through simulations the ability to tune the phononic band gaps of 3D periodic elastomeric structures using deformation. The elastomeric nature of the material makes the transformation of the band gaps a reversible and repeatable process, providing avenues for the design of tunable 3D phononic crystals such as sonic switches.  相似文献   

18.
The paper presents asymptotic models and numerical illustrations of periodic systems which possess band gaps and support standing waves at low frequencies. The structures considered here include periodic systems of defects (cracks or resonators of different types). Tuning mechanisms are described to control the position of band gaps in dispersion diagrams.  相似文献   

19.
失谐周期弹性支撑多跨梁中的波动局部化   总被引:10,自引:0,他引:10  
分析研究了失谐周期弹性支撑多跨梁中的波动局部化问题,采用传递矩阵方法给出了系统的传递矩阵,采用Wolf提出的计算Lyapunov指数的方法,确定了局部化因子,作为算例,给出了结构中局部化因子的数值结果,分析了跨长的失谐程度、线弹簧和抗弯弹簧的无量纲刚度对弹性波局部化的影响。  相似文献   

20.
Sonic crystals are periodic arrangement of sound hard scatterers, generally in square or triangular lattice configuration. The periodic obstruction to the sound wave by the scatterers leads to an interesting phenomenon of the band gap, which results in a high sound attenuation in the band gap region. In this work, a design of sonic crystal called as the radial sonic crystal is presented, which consists of periodic structures in polar coordinates. Such a structure attenuates divergent sound source. The radial sonic crystal is designed based on the Webster horn equation and using the property of invariance of governing equation from one unit cell to another. The designed radial sonic crystal is tested experimentally and by the finite element simulation. The experimental results are in good agreement with the simulation and show high sound attenuation of 30 dB. The high sound attenuation is due to the presence of the band gap in the radial sonic crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号