首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+-regulated photoprotein obelin determines the luminescence of the marine hydroid Obelia longissima. Bioluminescence is initiated by calcium and appears as a result of the oxidative decarboxylation related to the coelenterazine substrate. The luciferase of the luminescent marine coral Renilla muelleri (RM) also uses coelenterazine as a substrate. However, three proteins are involved in the in vivo bioluminescence of these animals: luciferase, green fluorescent protein, and Ca2+-regulated coelenterazine-binding protein (CBP). In fact, CBP that contains one strongly bound coelenterazine molecule is the RM luciferase substrate in the in vivo bioluminescent reaction. Coelenterazine becomes available for oxygen and the reaction with luciferase only after binding CBP with calcium ions. Unlike Ca2+-regulated photoproteins, the coelenterazine molecule is not activated by oxygen in the CBP molecule. In this work, by means of quantum chemical methods the behavior of substrates in these proteins is analyzed. It is shown that coelenterazine can form different tautomers: CLZ(2H) and CLZ(7H). The formation of 2-hydroperoxy-coelenterazine is studied. According to the obtained data, these proteins use different forms of the substrates for the reaction. In obelin, the substrate is in the CLZ(2H) form that affords hydrogen peroxide. In RM, coelenterazine is in the CLZ(7H) form, and therefore, CBP is not activated by oxygen.  相似文献   

2.
3.
Firefly luciferase is widely used in molecular biology and bioanalytical systems as a reporter molecule due to the high quantum yield of the bioluminescence, availability of stable mutant forms of the enzyme with prescribed spectral characteristics and abundance of bacterial expression systems suitable for production of recombinant proteins in limitless quantities. In this review, we described fusion proteins of luciferase with biotin‐binding domain and streptavidin, with proteins A and G, antibodies, with DNA‐ and RNA‐binding proteins, as well as fusion proteins designed for BRET systems. The firefly luciferase‐based fusion proteins are represented as an effective tool for the development of different bioanalytical systems such as (1) systems in which luciferase is attached to the surface of the target and the bioluminescence signal is detected from the specific complexes formed; (2) BRET‐based systems, in which the specific interaction induces changes in the bioluminescence spectrum; and (3) systems that use modified or split luciferases, in which the luciferase activity changes under the action of the analyte. All these systems have wide application in biochemical analysis of physiologically important compounds, for the detection of pathogenic bacteria and viruses, for evaluation of protein–protein interactions, assaying of metabolites involved in cell communication and cell signaling.  相似文献   

4.
After more than one‐half century of investigations, the mechanism of bioluminescence from the FMNH2 assisted oxygen oxidation of an aliphatic aldehyde on bacterial luciferase continues to resist elucidation. There are many types of luciferase from species of bioluminescent bacteria originating from both marine and terrestrial habitats. The luciferases all have close sequence homology, and in vitro, a highly efficient light generation is obtained from these natural metabolites as substrates. Sufficient exothermicity equivalent to the energy of a blue photon is available in the chemical oxidation of the aldehyde to the corresponding carboxylic acid, and a luciferase‐bound FMNH‐OOH is a key player. A high energy species, the source of the exothermicity, is unknown except that it is not a luciferin cyclic peroxide, a dioxetanone, as identified in the pathway of the firefly and the marine bioluminescence systems. Besides these natural substrates, variable bioluminescence properties are found using other reactants such as flavin analogs or aldehydes, but results also depend on the luciferase type. Some rationalization of the mechanism has resulted from spatial structure determination, NMR of intermediates and dynamic optical spectroscopy. The overall light path appears to fall into the sensitized class of chemiluminescence mechanism, distinct from the dioxetanone types.  相似文献   

5.
Luciferase of copepod Metridia longa (MLuc) is a naturally secreted enzyme catalyzing the oxidative decarboxylation of coelenterazine with the emission of light. To date, three nonallelic isoforms of different lengths (17–24 kDa) for M. longa luciferase have been cloned. All the isoforms are single‐chain proteins consisting of a 17‐residue signal peptide for secretion, variable N‐terminal part and conservative C‐terminus responsible for luciferase activity. In contrast to other bioluminescent proteins containing a lot of aromatic residues which are frequently involved in light emission reaction, the C‐terminal part of MLuc contains only four Phe, two Tyr, one Trp and two His residues. To figure out whether Tyr residues influence bioluminescence, we constructed the mutants with substitution of Tyr to Phe (Y72F and Y80F). Tyrosine substitutions do not eliminate the ability of luciferase to bioluminescence albeit significantly reduce relative specific activity and change bioluminescence kinetics. In addition, the Tyr replacements have no effect on bioluminescence spectrum, thereby indicating that tyrosines are not involved in the emitter formation. However, as it was found that the intrinsic fluorescence caused by Tyr residues is quenched by a reaction substrate, coelenterazine, in concentration‐dependent manner, we infer that both tyrosine residues are located in the luciferase substrate‐binding cavity.  相似文献   

6.
Cells and tissues are composed from atoms of chemical elements, some of which have two kinds of stable isotopes, magnetic and nonmagnetic ones. Not long ago, magnetic isotope effects (MIEs) have been discovered in experiments with cells enriched with magnetic or nonmagnetic isotopes of magnesium. These MIEs can stem from higher efficiency of the enzymes of bioenergetics in the cells enriched with magnetic magnesium isotope. In the studies of MIEs in biological systems, it is needed to monitor the ATP concentrations as the major energy source in cells. The most sensitive and rapid method of the ATP measurements is based on the use of the firefly luciferase–luciferin system. Since luciferase is the ATP-dependent enzyme and activated by Mg-ions, it is necessary to elucidate whether this enzyme is sensitive to magnetic field of the magnesium isotope’s nuclear spin. Herein we present the results of studying the effects of different isotopes of magnesium, magnetic 25Mg and nonmagnetic 24Mg and 26Mg, on bioluminescence spectra and enzymatic activity of firefly luciferase. It was shown, that neither kinetics of the bioluminescence signal nor the bioluminescence spectra manifest any statistically significant dependence on the type of magnesium isotope. So, no MIEs have been revealed in the luciferase-catalyzed oxidation of luciferin. It means that firefly luciferase bioluminescence can serve as the tool for search and studies of magnetic isotope effects in ATP-dependent enzyme reactions in biological systems, including the enzymatic synthesis and hydrolysis of ATP.  相似文献   

7.
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF‐hand calcium‐binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H‐bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine‐type luciferases).  相似文献   

8.
A streptavidin–luciferase fusion protein comprising the thermostable mutant form of firefly luciferase Luciola mingrelica and minimal core streptavidin was constructed. The streptavidin–luciferase fusion was mainly produced in a tetrameric form with high luciferase and biotin‐binding activities. It was shown that fusion has the same Km values for ATP and luciferin and the bioluminescence spectra as initial luciferase. The linear dependence of the bioluminescence signal on the content of the fusion was observed within the range of 10?18–10?13 mol per well. Successful application of obtained fusion in a biospecific bioluminescence assay based on biotin–streptavidin interactions was demonstrated by the example of a specific DNA hybridization analysis. A DNA hybridization analysis for Escherichia coli cells identification was developed using unique for these cells gadB fragment encoding glutamate decarboxylase. The amplified biotinylated GadB fragments were hybridized with the immobilized oligonucleotide probes; then, the biotin in the DNA duplexes was detected using the streptavidin–luciferase fusion protein. To reach the high sensitivity of the assay, we optimized the conditions of the assay. It was shown that the use of Pluronic for plate modification resulted in a significant reduction in the DNA detection limit which finally was 0.4 ng per well.  相似文献   

9.
Red‐shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red‐shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual‐color, far‐red to near‐infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far‐red to nIR emission maxima up to λmax=706 nm with different Fluc mutants. This emission is the most red‐shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep‐tissue bioluminescence imaging.  相似文献   

10.
In spite of recent advances towards understanding the mechanism of firefly bioluminescence, there is no consensus about which oxyluciferin (OxyLH2) species are the red and yellow‐green emitters. The crystal structure of Luciola cruciata luciferase (LcLuc) revealed different conformations for the various steps of the bioluminescence reaction, with different degrees of polarity and rigidity of the active‐site microenvironment. In this study, these different conformations of luciferase (Luc) are simulated and their effects on the different chemical equilibria of OxyLH2 are investigated as a function of pH by means of density functional theory with the PBE0 functional. In particular, the thermodynamic properties and the absorption spectra of each species, as well as their relative stabilities in the ground and excited states, were computed in the different conformations of Luc. From the calculations it is possible to derive the acid dissociation and tautomeric constants, and the corresponding distribution diagrams. It is observed that the anionic keto form of OxyLH2 is both the red and the yellow‐green emitter. Consequently, the effect of Luc conformations on the structural and electronic properties of the Keto‐(?1) form are studied. Finally, insights into the Luc‐catalyzed light‐emitting reaction are derived from the calculations. The multicolor bioluminescence can be explained by interactions of the emitter with active‐site molecules, the effects of which on light emission are modulated by the internal dielectric constant of the different conformations. These interactions can suffer also from rearrangement due to entry of external solvent and changes in the protonation state of some amino acid residues and adenosine monophosphate (AMP).  相似文献   

11.
Bacterial bioluminescence with continuous glow has been applied to the fields of environmental toxin monitoring, drug screening, and in vivo imaging. Nonetheless, the chemical form of the bacterial bioluminophore is still a bone of contention. Flavin mononucleotide (FMN), one of the light‐emitting products, and 4a‐hydroxy‐5‐hydro flavin mononucleotide (HFOH), an intermediate of the chemical reactions, have both been assumed candidates for the light emitter because they have similar molecular structures and fluorescence wavelengths. The latter is preferred in experiments and was assigned in our previous density functional study. HFOH displays weak fluorescence in solutions, but exhibits strong bioluminescence in the bacterial luciferase. FMN shows the opposite behavior; its fluorescence is quenched when it is bound to the luciferase. This is the first example of flavin fluorescence quenching observed in bioluminescent systems and is merely an observation, both the quenching mechanism and quencher are still unclear. Based on theoretical analysis of high‐level quantum mechanics (QM), combined QM and molecular mechanics (QM/MM), and molecular dynamics (MD), this paper confirms that HFOH in its first singlet excited state is the bioluminophore of bacterial bioluminescence. More importantly, the computational results indicate that Tyr110 in the luciferase quenches the FMN fluorescence via an electron‐transfer mechanism.  相似文献   

12.
Two bioluminogenic caged coelenterazine derivatives (bGalCoel and bGalNoCoel) were designed and synthesized to detect β‐galactosidase activity and expression by means of bioluminescence imaging. Our approach addresses the instability of coelenterazine by introducing β‐galactose caging groups to block the auto‐oxidation of coelenterazine. Both probes contain β‐galactosidase cleavable caging groups at the carbonyl group of the imidazo–pyrazinone moiety. One of the probes in particular, bGalNoCoel, displayed a fast cleavage profile, high stability, and high specificity for β‐galactosidase over other glycoside hydrolases. bGalN‐oCoel could detect β‐galactosidase activity in living HEK‐293T cell cultures that expressed a mutant Gaussia luciferase. It was determined that coelenterazine readily diffuses in and out of cells after uncaging by β‐galactosidase. We showed that this new caged coelenterazine derivative, bGalNoCoel, could function as a dual‐enzyme substrate and detect enzyme activity across two separate cell populations.  相似文献   

13.
Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnology, biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3−) to O2 to form 1[L•2−…O2•−]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.  相似文献   

14.
Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2, phenolate ion form LH? and dianion form L2?) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck–Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry‐changing region during transition between the ground state and the first singlet excited state.  相似文献   

15.
Replacement of the methylene group at the C-8 position with an extended electronic conjugation is a new promising method to develop red-shifted coelenterazine derivatives. In this paper, we have described an oxygen-containing coelenterazine derivative with a significant red-shifted(63 nm)bioluminescence signal maximum relative to coelenterazine 400a(Deep Blue C~(TM), 1). In cell imaging, the sulfur-containing coelenterazine derivative displayed a significantly(1.77 ± 0.09;P≤0.01) higher luminescence signal compared to coelenterazine 400 a and the oxygen-containing coelenterazine derivative exhibited a slightly(0.74 ± 0.08; P≤0.05) lower luminescence signal. It is beneficial to understand further the underlying mechanisms of bioluminescence.  相似文献   

16.
Bioluminescence is a form of chemiluminescence generated by luminous organisms. Luminous taxa have currently been reported from about 800 genera and probably over 10 000 species in the world. On the other hand, their bioluminescent systems, including chemical structures of luciferins/chromophores and the genes encoding luciferases/photoproteins, have been elucidated from only a few taxonomic groups, for example beetles, bacteria, dinoflagellates, ostracods and some cnidarians. Research efforts to understand unknown bioluminescence systems are being conducted around the world, and recently, for example, novel luciferin structures of luminous enchytraeid potworms and fungi were identified by the authors. In this study, we review the current status and perspectives, in the context of postgenomic era, of most likely novel but less‐revealed bioluminescence systems of ten selected organisms: earthworm, parchment tubeworm, fireworm, scaleworm, limpet, millipede, brittle star, acorn worms, tunicate and shark, which indeed are the next focus of our international collaboration.  相似文献   

17.
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors.  相似文献   

18.
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub‐micromolar concentrations. Particularly useful are genetically encoded, single‐protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM‐1 β‐lactamase (bla) as a single‐protein reporter for hyperpolarized (HP) 129Xe NMR, with significant saturation contrast at 0.1 μm . Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the 129Xe‐H2O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.  相似文献   

19.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

20.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号