首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The polycrystalline solids TiO2Fe2O3, with iron contents in the range 0–10 at.%, prepared by coprecipitation and by impregnation, and treated in air at temperatures in the range 500–1000°C, have been studied by X-ray, ESR, and Mössbauer methods. The TiO2 in the samples treated at 800 and 1000°C always forms the rutile phase and the Fe3+ has a rather low solubility in it (~0.1 at.%). The Fe3+ in excess forms the antiferromagnetic pseudobrookite phase (Fe2TiO5). The samples treated at 500 and 650°C show a dependence on the preparation method. Those prepared by coprecipitation give at 500°C the pure anatase phase in which the Fe3+ has a higher solubility (≥ 1%); those prepared by impregnation give the anatase phase accompanied by a variable amount of rutile. The treatment at 650°C provokes the partial transformation of anatase to rutile and the complete development of the Fe2TiO5 phase. The relevance of these results to the photocatalytic properties shown by these solids for the photoreduction of dinitrogen to ammonia is discussed.  相似文献   

2.
The properties of electrorheological fluids containing dispersed phase of titanium dioxide nanoparticles prepared via the sol-gel method and modified with metal oxides have been studied. Titanium dioxide has the anatase structure with crystallite sizes of 8–10 nm and a specific surface area of 90–140 m2/g. It has been found that the magnitude of the electrorheological response of the filler is determined by the specific surface area and the content of a modifying component. The strongest electrorheological response has been revealed for titanium dioxide modified with aluminum oxide at an Al content of 6.5–7.0 mol % relative to TiO2.  相似文献   

3.
The aggregation of nanoparticle catalysts is one of the main problems in catalytic reactions. In this study, a series of TiO2 nanoparticle catalysts with various dispersions were prepared and applied in the catalytic oxidation of dibenzothiophene (DBT) systems. Compositions and structures of the as‐prepared samples were analyzed by means of wide‐angle X‐ray diffraction, Raman and X‐ray photoelectron spectroscopies. The dispersions of TiO2 nanoparticles were controlled by calcining at various temperatures and verified using transmission electron microscopy. It was found that the activities of TiO2 nanoparticles in the catalytic oxidation of DBT were positively correlated with the dispersions. TiO2 nanoparticles calcined at 500 °C (500‐TiO2) showed the best catalytic activity and the oxidation of DBT reached 99.8% under mild conditions. Based on the results of GC–MS analysis, radical trapping experiments and electron spin resonance spectra, ?O2? radicals were proved to be the main active species in the oxidation process, and a mechanism is proposed. Meanwhile, the recycling performance of 500‐TiO2 was investigated, and no obvious decrease was observed after six recycles.  相似文献   

4.
A visible-light-active nitrogen doped nanocrystalline titanium dioxide (N–TiO2) hydrosol was prepared by precipitation–peptization method and following with hydrothermal crystallization at 110 °C holding for 6 h. XPS results show that nitrogen ions have been doped into the TiO2 lattice successfully and the UV–Vis absorption spectra indicate that the light absorption edge of the N-doped TiO2 has been red-shifted into visible light region. The photocatalytic performance of the N-doped TiO2 thin film prepared from the synthesized hydrosol was evaluated by photodegrading the gaseous formaldehyde (HCHO) under visible light irradiation. The photodegradation ratio of HCHO reached up to 90% within 24 h and the degradation ratio was stable for ten degradation cycles, indicating the prepared hydrosol has good reusable performance in photodegrading gaseous pollutants.  相似文献   

5.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

6.
TiO2(0–20 mol%)-8 mol% YSZ (8YSZ) ceramics were synthesized by a traditional solid-state reaction method. A cubic single phase was observed for 8YSZ, 4 mol% TiO2-8YSZ and 8 mol% TiO2-8YSZ. Tetragonal and cubic mixed phases were observed for 12–20 mol% TiO2-8YSZ ceramics. The sintering temperature was 1,700 °C for 8YSZ and 4 mol% TiO2-8YSZ ceramics, whereas it was 1,500 °C for 8–20 mol% TiO2-8YSZ. The thermal conductivity at room temperature decreased in proportion to increasing TiO2 content, from 3.0 to 2.3 W/m K. The specific heat of TiO2-8YSZ ceramics was unaltered as the TiO2 content changed.  相似文献   

7.
Mesoporous WO3–TiO2 composite films were prepared by a sol gel based two stage dip coating method and subsequent annealing at 450, 500 and 600 °C. An organically modified silicate based templating strategy was adopted in order to obtain a mesoporous structure. The composite films were prepared on ITO coated glass substrates. The porosity, morphology, and microstructures of the resultant products were characterized by scanning electron microscopy, N2 adsorption–desorption measurements, μ-Raman spectroscopy and X-ray diffraction. Calcination of the films at 450, and 500 °C resulted in mixed hexagonal (h) plus monoclinic phases, and pure monoclinic (m) phase of WO3, respectively. The degree of crystallization of TiO2 present in these composite films was not evident. The composite films annealed at 600 °C, however, consist of orthorhombic (o) WO3 and anatase TiO2. It was found that the o-WO3 phase was stabilized by nanocrystalline anatase TiO2. The thus obtained mesoporous WO3–TiO2 composite films were dye sensitized and applied for the construction of photochromic devices. The device constructed using dye sensitized WO3–TiO2 composite layer heat treated at 600 °C showed an optical modulation of 51 % in the NIR region, whereas the devices based on the composite layers heat treated at 450, and 500 °C showed only a moderate optical modulation of 24.9, and 38 %, respectively. This remarkable difference in the transmittance response is attributed to nanocrystalline anatase TiO2 embedded in the orthorhombic WO3 matrix of the WO3–TiO2 composite layer annealed at 600 °C.  相似文献   

8.
The liquidus in the system Bi2O3TiO2 has been determined in the range 2 to 22 mole % TiO2 by a thermobalance technique and by DTA. It has been confirmed that Bi12TiO20 melts incongruently at 875°C and that the eutectic composition between Bi12TiO20 and Bi2O3 melts at 795°C.  相似文献   

9.
Titanium dioxide (TiO2) aerogels were prepared with sol–gel ambient pressure drying method by using titanium tetrachloride (TiCl4) as precursor and tetraethoxysilane as modifier, calcinated at different temperature and characterized by X‐ray diffraction, transmission electron microscopy and small angle X‐ray scattering. The results showed that the TiO2 aerogels remained amorphous under 500 °C, changed to anatase from 600 °C and further changed to rutile from 900 °C. Between 60 °C and 500 °C, the primary particles within the samples concentrated mainly upon small sizes, enlarged and diverged remarkably above 600 °C. The crystalline grains grew and agglomerated with the rise of the calcination temperature. The TiO2 aerogels at a temperature higher than 800 °C have better stability than anatase because of the formation of partial Ti―O―Si bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at −196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions.  相似文献   

11.
In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol–gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600?°C is found to alter the chemical composition, the layer’s porosity and its surface but not the crystal phase. The room temperature mobility increases from 2?×?10?6 to 3?×?10?5?cm2/Vs when the sinter temperature is increased from 400 to 600?°C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550?°C, while the polymer penetrated deeply into titania layers that were sintered at 600?°C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550?°C, which yielded a power conversion efficiency of 0.5?%. Noticeably, samples with the TiO2 layer dried at 120?°C displayed short-circuit currents and open circuit voltages only about 15–20?% lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures.  相似文献   

12.

Pre-sulphated pure and Ag doped TiO2 photocatalysts were prepared by a modified low cost liquid impregnation method followed by acid (H2SO4) treatments. Surface and morphological characterizations of the prepared samples as well as their photocatalytic activity towards methyl orange (MO) were studied. The influence of sulphate pretreatment on the surface of pure TiO2, the dispersion of deposit metals and the particle size were analyzed for the samples exposed to different calcination temperature (i.e. 500, 600 and 700 °C) treatments. The physical characterizations of the photocatalysts were investigated using diffused reflectance spectroscopy (UV–Vis DRS), XRD, BET, TEM, SEM and EDX analyses. The Kubelka–Munk function was used to determine the band gap energy for all prepared samples, whereby the band gap energy of pre-sulphated 1% Ag doped TiO2 was found to be reduced to 2.95 eV. Photocatalytic activity towards the degradation of MO was found to be enhanced between 30 and 37% for the 1% Ag/TiO2-S compared to the undoped TiO2-S samples. The pre-sulphated sample of 1% Ag/TiO2-S calcined at 700 °C showed up to 80% degradation of MO under normal compact fluorescent light.

  相似文献   

13.
A new preparation method for Au/TiO2 nanotubes (NTs) by combing sol–gel with hydrothermal treatment technique was developed. The TiO2 NTs calcined at 300 °C were nearly uniform, and the gold particles were distributed homogeneously. The possible formation mechanism was suggested. The 5 % Au/TiO2 NTs calcined at 300 °C had the best catalytic activity for CO oxidation, and their conversion of CO remained at 100 % during 60 h on stream. This preparation method could improve the thermal stability of Au/TiO2 nanotube catalysts.  相似文献   

14.
TiO2 nanocrystallites were prepared from precursors tetra-n-butyl titanate (Ti(OC4H9)4) and titanium tetrachloride (TiCl4). The precursors were hydrolyzed by gaseous water in autoclave, and then calcined at predetermined testing temperatures. The samples were characterized by X-ray diffraction (XRD), thermogravimetry–differential thermal analysis (TG–DTA), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectra (FT-IR), and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the samples were evaluated by the photobleaching of methylene blue (MB) in aqueous solution and the photocatalytic oxidation of propylene in gas phase at ambient temperature. The results showed that the anatase phase nanocrystalline TiO2 could be obtained at relatively low temperatures (for precursor Ti(OC4H9)4 at 110 °C and for TiCl4 at 140 °C, respectively), and that the as prepared samples exhibited high photocatalytic activities to photobleach MB in aqueous solution. As the calcination temperatures increasing, the decolor ratio of MB increased and reached the maximum value of nearly 100% at 600 °C, and then decreased. The photobleaching of MB by all samples followed the pseudo-first-order kinetics with respect to MB concentration. The photodecomposition amount of propylene by TiO2 nanocrystallites calcined at 600 °C from precursor of Ti(OC4H9)4 is 21.6%, which is approaching to that by Degussa P25 TiO2 (24.9%).  相似文献   

15.
Mesoporous TiO2 is prepared by sol–gel process with a triblock copolymer as an organic template and aqueous TiOCl2 solution as inorganic precursor. The XRD patterns reveal that only the anatase phase can be observed in mesoporous TiO2, regardless of the different calcining temperatures, and with increasing calcining temperature the grain size gradually increases. The grain sizes of TiO2 increased from 4.7 to 11.9 nm with calcining temperature increasing from 300 to 400 °C. The pore size and the surface area evaluated from the Barrett–Joyner–Halenda model and Brunauer–Emmett–Teller method indicated that the average pore sizes increased from 87 to 153 Å and specific surface areas decreased from 179.71 to 74.31 m2/g for 300–400 °C calcination. The relationship between the optical band gap (E g) and microstructure of anatase has been determined and discussed. The quantum confinement effect is observed at grain sizes lower than 10 nm, and the estimated E g shifts from 3.32 to 3.46 eV. These results suggest that there are potential applications of mesostructured TiO2 with nanocrystals in the design of optical devices and photocatalysts.  相似文献   

16.
The deposition of TiO2 nanoparticles on SiC was carried out by mechanical milling under different conditions. SiC–TiO2 samples were used as photocatalysts for the degradation of organic dyes such as methylene blue and rhodamine B. A short time deposition of TiO2 nanoparticles was observed during mechanical milling (2 min at 200 rpm) to cover the SiC particles. The presence of SiC and TiO2 (anatase and rutile) was confirmed by means of X-ray diffraction after thermal treatment at 450 °C. The deposition of TiO2 on SiC was corroborated by scanning electron microscopy analysis; the thickness of the thin layer of TiO2 deposited on SiC increases as the proportion of TiO2 increases. The energy band gap values obtained for these compounds were around 3.0 eV. SiC–TiO2 photocatalysts prepared by mechanical milling exhibited better activity under UV-light irradiation for the degradation of methylene blue and rhodamine B than commercial TiO2 powder (titania P25).  相似文献   

17.
A series of flexible polyurethane foam (FPUF) and monolithic polyurethane (PU) sandwich panels reinforced with different contents of TiO2 nanoparticles (0, 0.5 and 1 mass%) have been successfully prepared by compression molding process at room temperature. The influence of TiO2 nanoparticles on the thermal properties of PU matrix has been investigated by thermogravimetric and dynamic mechanical thermal analysis (DMTA). The morphology of porous structure of FPUF sandwich panels has been characterized by scanning electron microscopy. The presence of TiO2 nanoparticles as reinforcement has improved the thermal properties of the FPUF and PU sandwich panel samples. It has been observed that FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles possessed the highest enhancement in thermal properties in all accomplished thermal tests. The DMTA results for the FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles indicated that the storage modulus and loss modulus have increased about 1.22 and 1.25 times, 1.5 and 1.55 times, respectively, compared to pure samples. Furthermore, the glass transition (T g) obtained from the damping factor (tanδ) curves has increased 2 and 1 °C for FPUF and PU sandwich panels, respectively.  相似文献   

18.
This paper is concerned with a study of the influence of synthesis temperature on the properties of TiO2 films and the performance of dye-sensitized solar cell (DSSC). The TiO2 film samples synthesized via liquid phase deposition for 5 h at various temperatures, namely, 40, 50, 60, 70 and 80°C. It was found that the morphological shape of the film changes with growth temperature. The optical absorption increases with growth temperature. However, the photoluminescence decreases with growth temperature. These TiO2 samples were applied in a DSSC of ITO/TiO2/electrolyte/platinum. The DSSC utilizing the sample grown at 40°C demonstrated the highest photovoltaic parameters with the Jsc, and η of 1.40 mA cm–2 and 0.44% respectively. This is due to the smallest grain size of TiO2 films and the smallest bulk resistance of the device.  相似文献   

19.
In this project, we synthesized TiO2 compounds through the molten salt method (MSM) using Ti(IV) oxysulfate, as the Ti source. Molten salts in the ratio of 0.375 M LiNO3:0.180 M NaNO3:0.445 M KNO3 were added and heated at temperatures of 145, 280, 380, and 480 °C for 2 h in air, respectively. A part of the sample prepared at 145 °C was further reheated to 850 °C for 2 h in air. X-ray diffraction studies showed that the amorphous phase was obtained when the sample was prepared at 145 °C, and polycrystalline to crystalline anatase phase was formed when heated from 280 to 850 °C, which is complementary to the results of selected area electron diffraction studies. Electrochemical properties were studied using galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy at a current density of 33 mA g?1 (0.1 C rate) and a scan rate of 0.058 mV s?1, in the voltage range 1.0–2.8 V vs. Li. Electrochemical cycling profiles for the amorphous TiO2 samples prepared at 145 °C showed single-phase reaction with a low reversible capacity of 65 mAh g?1, whereas compounds prepared at 280 °C and above showed a two-phase reaction of Li-poor and Li-rich regions with a reversible capacity of 200 mAh g?1. TiO2 produced at 280 °C showed the lowest capacity fading and the lowest impedance value among the investigated samples.  相似文献   

20.
A comparative study of TiO2 powders prepared by sol–gel methods is presented. Titanium tetraisopropoxide was used as the precursor for the sol–gel processes. The effects of the annealing treatment on phase, crystallite size, porosity and photodegradation of dyes (methyl orange and methylene blue) were studied. The phase structure, microstructure and surface properties of the films were characterized by using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The X-ray diffraction was used for crystal phase identification, for the accurate estimation of the anatase–rutile ratio and for the crystallite size evaluation of each polymorph in the samples. It was found that the only TiO2 anatase phase of the synthesized TiO2 develops below 500 °C, between 600 and 800 °C the anatase coexist with rutile and above 800 °C only the rutile phase was found in the samples. Attention has been paid not only to crystal structures, but also to the porosity, the particle size and the photocatalytic properties. However, the annealing temperature was found to have significant influence on the photocatalytic properties. Different TiO2 doctor blade thin films were obtained mixing the sol gel powder (100% anatase) and TiO2 Aldrich with TiO2 Degussa P25. The surfactant (Triton X100 or sodium dodecyl sulfate) affects the packing density of the particles during deposition and the photocatalytic degradation efficiency of the dyes. The photocatalytic degradation kinetics of methyl orange and methylene blue using TiO2 thin film were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号