首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

2.
The heats of formation (HOFs) for a series of monofurazan derivatives were calculated by using density functional theory. It is found that the ? CN or ? N3 group plays a very important role in increasing the HOF values of the furazan derivatives. The detonation velocities and detonation pressures of the furazan derivatives are evaluated at two different levels. The results show that the ? NF2 group is very helpful for enhancing the detonation performance for the furazan derivatives, but the case is quite the contrary for the ? CH3 group. An analysis of the bond dissociation energies and bond orders for the weakest bonds indicate that the substitutions of ? CN group are favorable and enhances the thermal stability of the furazan derivatives, but the ? NO2 groups produce opposite effects. These results provide basic information for the molecular design of novel high‐energy density materials. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

3.
Bis (1, 5‐diamino‐4‐methyl‐tetrazolium) azotetrazolate ( BMDATZT ) was synthesized with high yield in this work. The yield is 97.46%. The structure was characterized by IR, 1H NMR, and MS. The single crystal of BMDATZT?2H2O was first cultivated. The heat of formation, detonation pressure, and detonation velocity were first calculated. The crystalline density of BMDATZT?2H2O is 1.573 g/cm3. BMDATZT has high detonation pressure and detonation velocity (P =25.06 GPa, D = 7.805 km s?1), which are higher than those of 2,4,6‐Trinitrotoluene (TNT). Its thermal and mechanical sensitivities are moderate. Therefore, it is a kind of insensitive nitrogen‐rich energetic ionic salt with good performance, and it has potential application prospect in gas generating agent, explosive and solid propellant.  相似文献   

4.
A series of ethylene oxide derivations, C2OH4?Cn (NO2) n (x?=?1?C4), has been designed computationally. We calculated the heats of formation (HOFs), bond dissociation energy (BDE), and explosive performances (detonation velocity and detonation pressure) of the title compounds by using density functional theory with 6-311G** basis set. The results show that most of ethylene oxide derivations have positive HOFs values except I. All the calculated BDE and the bond dissociation energies without zero-point energy corrections (BDE0) are larger than 200?kJ?mol?1, which indicate that all the ethylene oxide derivations have good thermal stabilities. The explosive performances of most of ethylene oxide derivations would rank up with cyclotrimethylenetrinitramine (RDX). The results have not only shown that these compounds may be used as high energy density compounds, but also provide some useful information for further syntheses.  相似文献   

5.
The present study constructed and optimized FOX-7 crystal using a novel technique including grand canonical monte carlo (GCMC), density functional theory (DFT) and molecular dynamics (MD) methods. Therein, the crystal density, atomic and electronic actions were considered. The results showed that the 1.96 g?cm-3 FOX-7 crystal has the highest stability and detonation properties, such as the total crystal energy, surface electronic density, friction sensitivity, detonation pressure, and so on. These results are close to the experimental data.  相似文献   

6.
The synthesis of 5-nitro-2-nitratomethyl-1,2,3,4-tetrazole (4) and its full characterization are given here. Compound 4 was synthesized through the nitration of 5-nitro-2-hydroxymethyl-tetrazole (3) with fuming nitric acid and acetic anhydride and its structure was characterized by MS, FT-IR, 1H-NMR and 13C-NMR techniques. The crystal structure of 4 was determined by X-ray single crystal diffraction analysis. The compound belongs to the orthorhombic system with space group Pna2(1), and its crystal parameters were a = 2.121(8) nm, b = 0.5281(19) nm, c = 0.6246(2) nm, Z = 4, V = 0.6995(4) nm3, Dc = 1.805 g/cm3, F(000) = 384, μ = 0.174 mm?1. A theoretical study of 4 has been performed, using quantum computational density functional theory (B3LYP methods) with 6-31G* basis sets as implemented in the Gaussian 03 program suite. The obtained heat of formation (HOF) for 4 was 228.07 kJ·mol?1, the detonation pressure (P) values calculated for 4 was 37.92 GPa, the detonation velocity (D) can reach 9260 m·s?1, and the oxygen balance was zero (Q), making 4 a competitive energetic compound.  相似文献   

7.
A novel method for judging the energy output of energetic compounds has been deduced from the conservation of energy condition. On the basis of B3LYP/6-31++G** fully optimized geometries, the enthalpy of formation, crystal density, detonation velocity and pressure for polynitrocubanes have been calculated using various theoretical methods. It has been observed that for polynitrocubanes the introduction of –NH2 group onto the skeleton results in the destabilization of the neighboring C–C bonds on the skeleton. The C–C and C–NO2 bonds of octanitrocubane (ONC) are stronger than those of partly nitrated cubanes, implying that the shock stability of ONC is superior to that of partly nitrated cubanes. For polynitrocubanes the calculated crystal density by the Karfunkel–Gdanitz ab initio method is within 0.07 g/cm3 of experimental crystal density, being more accurate than by the group additivity method. The detonation velocity, the detonation pressure, and the energy output all increase from tetranitrocubane to ONC. The detonation velocity and pressure of ONC are predicted to reach 9.58 km s?1 and 60.0 Gpa, respectively. It is first indicated that the energy output for 1, 2, 3, 5, 8-pentanitrocuban is close to that of the widely used high explosive HMX and for ONC is about 80% larger than that of HMX.  相似文献   

8.
An improved synthesis of the simplest nitric acid ester, methyl nitrate, and a new synthesis of fluoromethyl nitrate use the metathesis of the corresponding iodomethanes with silver nitrate. Both compounds were identified by spectroscopy and the structures determined for in situ grown crystals by X‐ray diffraction as well as in the gas phase by electron diffraction. Fluorination leads to structures with shorter C?O and N?O bonds, has an energetically destabilizing effect and increases friction sensitivity, but decreases detonation performance.  相似文献   

9.
Density functional theory (DFT) has been employed to study the geometric and electronic structures, band gap, thermodynamic properties, density, and performance properties of a series of polynitrotriazoles at the B3LYP/aug-cc-pVDZ level. The detonation performances were evaluated by the Kamlet–Jacobs semi-empirical equations based on the calculated densities and heats of reaction. It has been found that the model compounds with the predicted densities of 1.8 g/cm3, detonation velocities of 8.8 km/s, and detonation pressures of 35 GPa may be novel potential candidates of high energy density materials. The discrepancies in the performance properties, stabilities or sensitivities among isomers are caused by the relative position of NH2 and NO2 groups.  相似文献   

10.
Density functional theory has been used to investigate geometries, heats of formation (HOFs), C-NO2 bond dissociation energies (BDEs), and relative energetic properties of nitro derivatives of azole substituted furan. HOFs for a series of molecules were calculated by using density functional theory (DFT) and Møller–Plesset (MP2) methods. The density is predicted using crystal packing calculations; all the designed compounds show density above 1.71 g/cm3. The calculated detonation velocities and detonation pressures indicate that the nitro group is very helpful for enhancing the detonation performance for the designed compounds. Thermal stabilities have been evaluated from the bond dissociation energies. Charge on the nitro group was used to assess the impact sensitivity in this study. According to the results of the calculations, tri- and tetra-nitro substituted derivatives reveal high performance with better thermal stability.  相似文献   

11.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
3,6-二肼基-1,2,4,5-四嗪的晶体结构及理论研究   总被引:2,自引:0,他引:2  
通过缓慢蒸发溶剂法培养得到3, 6-二肼基-1, 2, 4, 5-四嗪(DHT)的单晶, 用X-射线单晶衍射仪进行了结构测定. 该晶体属于单斜晶系, P2(1)/c空间群, a=4.032 (4) ?, b=5.649 (6) ?, c=12.074 (14) ?. β=99.32°, Z=2, V=271.4(5) ?3. DHT分子中肼基N原子与四嗪环基本位于同一平面呈现轴对称结构, 分子中的大量氢键使之形成箭尾形排列的三维网络结构. 通过实验测得DHT的燃烧热为1787kJ?mol-1, 5s爆发点为454 K. 在DFT-B3LYP/6-311G*水平下对DHT的电子结构和自然键轨道进行了分析. 通过原子化能的方法计算得到DHT的标准生成热为1075 kJ?mol-1, 与实验值接近. 爆轰性能计算表明, DHT在密度为1.64 g?cm-3时, 爆速和爆压分别为9.27 km?s-1和36.02 GPa, 高于TNT和HMX.  相似文献   

13.
Molecular dynamics has been employed to simulate the well-known high energy density compound epsilon-CL-20 (hexanitrohexaazaisowurtzitane) crystal and 12 epsilon-CL-20-based PBXs (polymer bonded explosives) with four kinds of typical fluorine polymers, i.e., polyvinylidenedifluoride, polychlorotrifluoroethylene, fluorine rubber (F(2311)), and fluorine resin (F(2314)) individually. The elastic coefficients, isotropic mechanical properties (tensile moduli, bulk moduli, shear moduli, and poission's ratios), and bonding energy are first reported for epsilon-CL-20 crystal and epsilon-CL-20-based polymer bonded explosives (PBXs). The mechanical properties of epsilon-CL-20 can be effectively improved by blending with a small amount of fluorine polymers, and the whole effect of the adding fluorine polymers to improve mechanical properties of PBXs along the three crystalline surfaces of epsilon-CL-20 is found to be (100) approximately (001) > (010). The interaction between each of the crystalline surfaces and each of the fluorine polymers is different, and the ordering of binding energy for the three surfaces is (001) > (100) > (010); F(2314) always has the strongest binding ability with the three different surfaces. F(2314) can best improve the ductibility and tenacity of PBX when it is positioned on epsilon-CL-20 (001) crystal surface. The calculations on detonation performances for pure epsilon-CL-20 crystal and the four epsilon-CL-20-based PBXs show that adding a small amount of fluorine polymer into pure epsilon-CL-20 will lower detonation performance, but each detonation parameter of the obtained PBXs is still excellent.  相似文献   

14.
Mechanisms of consumption of inhibitors in gas mixtures in different combustion modes—ignition prevention and suppression of flame propagation and detonation—have been revealed. It has been found that no more than a few hundredths of a percent of the initial reagents, including the inhibitor, are consumed for the prevention of ignition. In suppression of flame propagation and detonation, the inhibitor is consumed only in chain termination reactions. Oxygen is additionally consumed only in reactions with the products of incomplete oxidation of the inhibitor. The results have been interpreted in the framework of the theory of nonisothermal chain processes.  相似文献   

15.
The interaction of copper with chlorine-containing gases has been studied. The resulting kinetic relationships are linear, indicating that the process occurs in a steady-state mode. It has been found that biases of ?61 and ?107 W provide energy of ions sufficient to maintain the effective rate of ion-stimulated desorption of the reaction products. The surface quality of the treated samples has been analyzed using atomic force microscopy.  相似文献   

16.
An analogue-oriented synthetic route for the formulation of furazan-functionalized 5-nitroimino-1,2,4-triazoles has been explored. The process was found to be straightforward, high yielding, and highly efficient, and scalable. Nine compounds were synthesized and the physicochemical and energetic properties, including density, thermal stability, and sensitivity, were investigated, as well as the energetic performance (e.g., detonation velocities and detonation pressures) as evaluated by using EXPLO5 code. Among the new materials, compounds 4 – 6 and 11 possess high densities, acceptable sensitivities, and good detonation performances, and thereby demonstrate the potential applications as new secondary explosives.  相似文献   

17.
At a microscopic level, two molecular models, respectively one- and two-dimensional, for describing the shock-induced detonationmechanism of an energetic crystal have been previously successively presented (after initiation). We put together, here, their characteristic features, and we discuss their respective contributions inorder to define the molecular and crystalline conditions that a crystal fulfills to sustain a shock induced wave detonation. The two-dimensional model which allows longitunal but also transversal atomic motions, has enabled us to elicit the crystalline structure in relation with the existence of a wave detonation propagation in the crystal or not. By comparison to detonation experiments the coherence of the models is performed. It may thus be possible to form an idea as to why a molecular compound can detonate through a shock wave.  相似文献   

18.
Presence of an unique atom-to-face alcoholic oxygen atom?π interaction between a pentafluorophenyl group and alcoholic oxygen (O?π) has been demonstrated by X-ray analysis of the novel chiral amino alcohol instead of the well-known interaction between usual aromatic ring and alcoholic hydrogen atom (OH?π).  相似文献   

19.
Periodic density functional theory calculations are performed to study the hydrostatic compression effects on the structure, electronic, and thermodynamic properties of the energetic polyazide 4,4′,6,6′‐tetra(azido)hydrazo‐1,3,5‐triazine (TAHT) in the range of 0?100 GPa. At the ambient pressure, the local density approximation/Ceperley‐Alder exchange‐correlation potential parameterized by Perdew and Zunger relaxed crystal structure compares well with the experimental results. The predicted heat of sublimation is 38.68 kcal/mol, and the evaluated condensed phase of formation (414.04 kcal/mol) approximates to the experimental value. The detonation velocity and detonation pressure for the solid TAHT are calculated to be 7.44 km/s and 23.71 GPa, respectively. When the pressure is exerted less than 35 GPa, the crystal structure and geometric parameters change slightly. However, at 36 GPa, the molecular structure, band structure, and density of states change abnormally because of the azide‐tetrazole transformation that has not been observed in gas phase or polar solvents. The azido group cyclizes to form a five‐membered tetrazole ring that is coplanar with the riazine ring and contributes to a larger conjunction system. As the pressure augments further to 80 GPa, the hydrogen transfer is found and a new covalent bond H2? N9 is formed. In the studied pressure range, the band gap decreases generally except for some breaks due to the molecular transformation and drops to nearly zero at 100 GPa, which means the electronic character of the crystal changes toward a metallic system. An analysis of the electronic structure shows that an applied pressure increases the impact sensitivity of TAHT. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
多硝基四面体烷结构和性能的理论研究   总被引:1,自引:0,他引:1  
许晓娟  a 肖鹤鸣b 《化学学报》2008,66(20):2219-2226
在B3LYP/6-31G**水平下, 对四种四面体烷硝基衍生物进行理论研究. 基于全优化构型, 计算其红外光谱(IR)、热力学性质; 通过设计合理等键反应计算其气相生成热(HOF); 运用Kamlet-Jacobs方程估算其爆速(D)和爆压(p); 通过计算和比较各化合物的两种可能引发键(C—C和C—N)离解能(EC—C和EC—N), 确认该系列化合物的热解引发键和热稳定性. 讨论了各性能参数与其结构参数的关系. 兼顾高能量密度化合物(HEDC)的能量性质和稳定性要求, 最终认为该系列化合物不可作为潜在HEDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号