首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The size of the electroconvective instability region on the membrane-solution boundary at currents exceeding the limiting diffusion current was measured by laser interferometry. The influence of the chemical nature of the ionogenic groups of ion-exchange membranes on the development of electroconvective instability was studied. The thickness of the electroconvection region decreased as the catalytic activity of the ionogenic groups of commercial and pilot membrane samples with respect to the heterolytic water dissociation increased. The maximum size of the electroconvective instability region and the minimum currents at which it was recorded for the anion-exchange membranes under study were determined for the highly basic modified anion-exchange membrane MA-41M with an almost completely suppressed water dissociation function. A correlation was found between the size of the convective instability region and the characteristic points on the current-voltage curves.  相似文献   

2.
Overlimiting current modes are of considerable interest for the practice of electrodialysis (ED). However, the economical expedience of such ED modes is evident only for desalination of dilute solutions. Here, we show the theoretical analysis of the effect of concentration on the behavior of an ED cell with homogeneous ion-exchange membranes. The study is based on numerical solution of the two-dimensional system of coupled equations of Nernst–Planck–Poisson–Navier–Stokes. It is shown that as the electrolyte concentration in solution that enters the ED desalination chamber increases, the intensity of electroconvection decreases, which induces a decrease in the relative mass-transfer rate (the decrease in the ratio of current density to its limiting value). This effect is stronger in the region of high potential differences where the electroconvective instability of Rubinstein–Zaltzman is realized under the conditions of a nonuniform concentration field caused by solution desalination. In contrast, the increase in the counterion concentration at the membrane surface (associated with the increase in the surface charge) intensifies the electroconvection.  相似文献   

3.
The dynamics of changes in overall and partial voltammetric characteristics with respect to chloride and hydroxide ions is studied by the method of rotating membrane disk (RMD) under the conditions of stabilized diffusion layer thickness for the original strongly basic MA-41P and homogeneous AMX membranes and also for the modified heterogeneous MA-41P-M membrane at high current densities. For unmodified anion-exchange membranes at currents exceeding the limiting value, the hydrolysis of fixed ammonium bases produces secondary and ternary amino groups which are catalytically active in the reaction of water molecule dissociation. The hydrolysis of amino groups in the membrane surface layer is the mechanism of degradation of electrochemical characteristics of strongly basic membranes. This results in the increase of transport numbers with respect to hydroxide ions and weakening of mass transfer with respect to salt ions. For the surface-modified heterogeneous anion-exchange membranes, no degradation of electrochemical characteristics is observed. The characteristics of the surface-modified MA-41P-M membrane remain stable: after long-term operation of the energized membrane, the partial currents with respect to hydroxide ions are close to zero and the mass transfer with respect to salt ions is considerably intensified. The dependences of the thickness of the hydrolyzed layer of a strongly basic anion-exchange membrane on the time of its exposure to solutions of high pH are determined. An original method is developed for determination of the hydrolyzed layer thickness for strongly-basic anion-exchange membranes, which is based on the copper ability to form stable complex compounds with weakly basic amino groups of anion-exchange membranes.  相似文献   

4.
《Mendeleev Communications》2023,33(2):275-278
For the first time, direct evidence was obtained using laser interferometry and flicker-noise spectroscopy that the main cause of the increase in the transport of amino acids through a sulfonated cation-exchange membrane in intense current modes is electroconvection. The turbulent nature of electroconvective vortices at the solution/membrane interface, acidification of the solution in the demineralization compartment and a substantial intensification of amino acid fluxes under over-limiting current modes were revealed. This indicates the electroconvective destruction of the barrier effect of the solution layer with a high pH value near the cation-exchange membrane.  相似文献   

5.
In electrodialysis desalination processes, the operating current density is limited by concentration polarization. In contrast to other membrane processes such as ultrafiltration, in electrodialysis, current transport above the limiting current is possible. In this work, the origin of the overlimiting current at cation-exchange polymers is investigated. We show that, under certain experimental conditions, electroconvection is the origin of the overlimiting conductance. The theory concerning electroconvection predicts a shortening of the plateau length of membranes with increased conductive or geometrical heterogeneity. We investigate the influence of these two parameters and show that the creation of line undulations on the membrane surface normal to the flow direction, having distances in the range of approximately 50-200% of the boundary-layer thickness, lead to an earlier onset of the overlimiting current. The plateau length of the undulated membranes is reduced by up to 60% compared to that of a flat membrane. These results verify the existence of electroconvection as a mechanism destabilizing the laminar boundary layer at the liquid-membrane interface and causing ionic transport above the limiting current density.  相似文献   

6.
Polarization characteristics of electromembrane systems (EMS) based on the Russian commercial heterogeneous membranes MA-40 and MA-41, the anion-exchange heterogeneous membrane AMH (Mega, Czech Republic), and the modified membrane MA-40M are studied by the method of rotating membrane disk in dilute sodium chloride solutions. The effective transport numbers of ions are found; the partial voltammetric characteristics (VAC) with respect to chloride and hydroxyl ions are measured; the limiting current densities are calculated as a function of the membrane disk rotation rate. In terms of the theory of the overlimiting state of EMS, based on experimental VAC and the dependences of the effective transport numbers on the current density, the following internal parameters of systems under study are calculated: the space charge and electric field strength distribution over the diffusion layer and the membrane. It is shown that water dissociation can be virtually completely eliminated by substituting chemically stable quaternary ammonium groups inert with respect to water dissociation in the surface layer of a heterogeneous anion-exchange membrane MA-40 for the active ternary and secondary functional amino groups. The maximum electric field strength values at the membrane/solution interface, which were found in the framework of the theory of over-limiting state, turned out to be close for all anion-exchange membranes studied, namely, (7?C9) × 106 V/cm. This suggests that it is the nature of ionogenic groups in the surface layer rather than the field effect that plays the decisive role in the membrane ability to accelerate the water dissociation reaction. It is proved experimentally that in highly intense current modes of the electrodialysis process, the thermal hydrolysis of quaternary ammonium bases occurs in strongly basic MA-41 and AMH membranes by the Hofmann reaction to form ternary amino groups catalytically active in water dissociation reaction. Based on the concept on the catalytic mechanism of water dissociation, the fraction of ternary amino groups formed by thermal hydrolysis in the surface layer (the space charge region) of monopolar anion-exchange membranes MA-41 and AMH is assessed quantitatively as 0.7 and 6.5%, respectively.  相似文献   

7.
The paper is concerned with convection at an ion-exchange electrodialysis membrane induced by nonequilibrium electroosmosis as a source of overlimiting conductance current through the membrane. Derivation of nonequilibrium electroosmotic slip condition is recapitulated along with the results of linear stability analysis of quiescent electrodiffusion through a flat ion-exchange membrane. Results of numerical calculation pertaining to nonlinear convection, developing from the respective instability, are reported along with those of recent experiments with modified membranes. These latter rule in favor of electroosmotic versus bulk electroconvective origin of overlimiting conductance through ion-exchange membranes.  相似文献   

8.
Mechanisms responsible for the overlimiting ion transfer in membranes systems are discussed. The overlimiting transfer is shown to be due largely to the action of four effects coupled with the concentration polarization of the system. Two of these are connected with the water dissociation near the membrane/solution interface: the emergence of additional charge carriers (ions H+ or OH?) in the depleted solution layer and the exaltation of transfer of salt counterions. The latter effect is connected with the perturbation of electric field caused by the water dissociation products. The other two effects are two versions of coupled convection, which leads to partial destruction of the depleted diffusion layer. These include gravitational convection and electroconvection. The former is caused by the emergence of the solution’s density gradient. The latter develops via a mechanism of electroosmotic slip. In this work, methods of voltammetry and chronopotentiometry and pH measurements are used to study the transfer of ions through homogeneous membranes Nafion-117 and AMX as a function of the concentration of sodium chloride solutions in the underlimiting and overlimiting current regimes. In a 0.1 M NaCl solution, gravitational convection makes a considerable contribution to the transfer of salt ions near the membrane surface in intensive current regimes. The influence of this effect on the electrochemical behavior of membrane systems weakens with the solution dilution and with increasing relative transfer of the H+ and OH? ions that are generated at the membrane/solution interface. In conditions where gravitational convection is suppressed and the water dissociation near the membrane/solution interface is not great, the major contribution to the overlimiting growth of current is made by electroconvection. Topics for discussion in the paper include the mutual influence of effects on one another, in particular, the effect the rate of generation of the H+ and OH? ions exerts on the gravitational convection and electroconvection and the reasons for the different behavior of cation-and anion-exchange membranes in intensive current regimes.  相似文献   

9.
We recently have reported [J. Chem. Phys. 122, 164701 (2005)] a family of electroconvective patterns that arise when charge-stabilized colloidal dispersions are driven by constant (dc) vertical electric fields. Competition between gravity and electrokinetic forces acting on the individual spheres in this system leads to the formation of highly organized convective instabilities involving hundreds of spheres. Here, we report a distinct class of electroconvective patterns that emerge in confined aqueous dispersions at higher biases. These qualitatively resemble the honeycomb and labyrinthine patterns formed during thermally driven Rayleigh-Benard convection, but arise from a distinct mechanism. Unlike the localized colloidal electroconvective patterns observed at lower biases, moreover, these system-spanning patterns form even without dispersed colloidal particles. Rather, they appear to result from an underlying electroconvective instability during electrolysis in the parallel plate geometry. This contrasts with recent theoretical results suggesting that simple electrolytes are linearly stable against electroconvection.  相似文献   

10.
Polarization characteristics of the homogeneous MF-4SK perfluorinated sulfonated cation-exchange membrane and the heterogeneous MK-40 sulfonic acid membrane with its surface modified by a homogeneous film of Nafion are studied at a rotating membrane disk in 0.1 and 0.001 M sodium chloride solutions. Partial current-voltage curves (CVC) are obtained for sodium and hydrogen ions, and limiting current densities in the electromembrane systems (EMS) under study are calculated as a function of the rotation rate of the membrane disk. Contribution from different mechanisms (electrodiffusion, electroconvection, dissociation of water, and the effect of the limiting-current exaltation) to the total ion flow is estimated experimentally and theoretically under conditions that the diffusion layer in the EMS has stabilized in thickness. It is established that surface modification of the heterogeneous MK-40 membrane with a 7 μm layer of a modifying agent almost completely eliminates the dissociation of water molecules, and the properties of the heterogeneous MK-40 membrane approximate those of the homogeneous Nafion membrane. From IR spectra and potentiometric titration curves of the MK-40 and MF-4SK membranes, it is shown that the acidity of the sulfonate groups in these membranes is nearly identical, but a difference in the dissociation rate of water at these membranes is determined by a different character of charge-density distribution and potential near the membrane-solution interphase boundary. By means of the theory of the overlimiting state in EMS, the internal parameters of the systems under investigation are calculated: distribution of space-charge density and electric-field potential in the diffusion layer and in the membrane. Partial CVC are calculated for H+ ions for the space-charge region in the phase of the MF-4SK and MK-40/Nafion ion-exchange membranes. Partial CVC with similar characteristics are compared for the heterogeneous monopolar MK-40 and the bipolar MB-2 membranes, which contain sulfonate groups. It is concluded that the membrane surface layer, where the space charge is localized, plays a dominant role in speeding up the dissociation of water in EMS.  相似文献   

11.
An experimental device consisting of a rotating membrane disk with horizontally positioned cation-exchange membrane MK-40 is described. The device’s design makes it possible to simultaneously obtain current-voltage curves (CVC) and dependences of effective transport numbers for ions of electrolyte and water dissociation products on the current density. Partial CVC are calculated and limiting current densities and diffusion layer thickness are determined at various disk rotation rates. At current densities below the limiting value, the disk’s CVC obey regularities of electrodiffusion kinetics. Upon raising the current density further, the salt ion fluxes increase due to a decrease in the effective diffusion layer thickness, which is caused by the emergence in the near-membrane region of a space charge and electroconvection. At high current densities there occur oscillations of the potential jump that are caused by hydrodynamic instability of the near-membrane solution layer.  相似文献   

12.
In the electrodialysis of dilute solutions, performed at intense current regimes, the membrane electrical conductance and diffusion permeability are no more crucial. Of more importance become the membrane properties that control increase in the overlimiting mass transfer of salt ions, as well as H+ and OH? ions in membrane systems. In this work different methods of the improving of mass-exchange characteristics of commercial ion-exchange membranes intended for operation at intense current regimes are discussed. They are based on modern concepts of mechanisms of the electroconvection (which proceeds as electroosmosis of 2nd kind), as well as mechanisms of H+ and OH? ions generation at the membrane/solution interface. Influence on the membrane electrochemical and mass-exchange characteristics is possible via (a) control of chemical nature of fixed groups at membrane surfaces, in order to weaken their catalytic activity with respect to water dissociation reaction, (b) increase in the surface hydrophobicity, and (c) design of electrical inhomogeneity of the membrane/solution interface; the purpose is the facilitating of intense development of electrical convection.  相似文献   

13.
The behaviour of bipolar membranes in NaCl and Na2SO4 solutions is discussed. The membranes are characterized in terms of their limiting current densities. Below the limiting current density the electric current is carried by salt ions migrating from the transition region between the anion and the cation exchange layer of the bipolar membrane. In steady state these ions are replaced by salt ions transported from the bulk solutions into the transition region by diffusion and migration due to the fact that the ion-exchange layers are not strictly permselective. When the limiting current density is exceeded, the salt transport from the transition region can no longer be compensated by the transport into the region and a drastic increase in the membrane resistance and enhanced water dissociation is observed. This water dissociation is described as being a combination of the second Wien effect and the protonation and deprotonation of functional groups in the membrane. The limiting current density is calculated from a mass balance that includes all components involved in the transport. The parameters used in the mathematical treatment are the diffusion coefficients of salt ions and water, the ion mobilities in the membrane, the fixed charge densitiy of the membrane, the pKb values of the functional groups and the solution bulk concentrations.  相似文献   

14.
Starburst dendrimer polyamidoamine (PAMAM) with ellipsoidal or spheroidal shape is structure-regular and has much more amino groups than conventional polymers. This paper investigates the possibility of these amino groups on water dissociation in a bipolar membrane interface. To do this, a bipolar membrane is prepared by casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide (DMF) on a commercial anion exchange membrane that is immersed in PAMAM aqueous solution in advance. The existence of PAMAM adsorbed on the membrane is proved by X-ray photoelectron spectroscopy (XPS), and the adsorption amount is evaluated by weighting method. The junction thickness of the prepared bipolar membrane is determined by electrochemical impedance spectroscopy (EIS), and the performance is evaluated by current–voltage curves. The experiments show that both the generation and concentration of PAMAM would strongly affect the characteristics of the bipolar membranes. There exists a transitional concentration for various generations PAMAMs to catalyze effectively the water dissociation, and above or below the transitional concentration the performance of bipolar membranes is decreasing. The higher the generation, the lower the concentration. Moreover, at a fixed solution concentration, there is not the simple relation of monotone decreasing or increasing between the performance of bipolar membranes and the generations of PAMAMs. All these can be explained according to the characteristics of PAMAMs combined with available water dissociation theory.  相似文献   

15.
Four effects providing overlimiting current transfer in ion-exchange membrane systems are examined. Two of them are related to water splitting: the appearance of additional current carriers (H+ and OH- ions) and exaltation effect. Two others are due to coupled convection partially destroying the diffusion boundary layer: gravitational convection and electroconvection. Three anion-exchange membranes, which differ in surface morphology and the nature of ion-exchange sites within a surface layer, are examined. The ion transfer across these membranes in NaCl solutions is studied by voltammetry, chronopotentiometry, and pH-metry. By excluding the effects of water splitting and gravitational convection, it is shown that the main mechanism of overlimiting mass transfer in narrow membrane cells at low salt concentrations is electroconvection. The reasons explaining why water splitting suppresses electroconvection are discussed. The scenario of development of potential oscillations with growing current and time is compared with that described theoretically by Rubinstein and Zaltzman.  相似文献   

16.
Within the framework of the mathematical model of Nernst-Planck-Poisson, an attempt is undertaken to theoretically describe the electrodiffusion of ions in the system diffusion layer/monopolar ionexchange membrane, which is accompanied by dissociation of water molecules. The formulas for estimating the current density transferred through a monopolar membrane by hydrogen or hydroxyl ions formed in dissociation of water in the space-charge region are derived. The rate constants and other parameters of dissociation of water molecules in the space-charge region of monopolar membranes under conditions of stabilization of the diffusion layer thickness are calculated. Their comparative analysis with the similar characteristics of bipolar membranes is carried out. For the phosphoric-acid heterogeneous membrane MK-41 in which the polarization conditions in the current density range under study are not so severe and the reaction layer is not being depleted as in the bipolar membrane MB-3 (contains the same phosphoric-acid groups), it is shown that only single-charged phosphoric-acid groups are involved in the water dissociation reaction. For MK-41, the calculated constants of the heterolytic reaction of water molecule dissociation are lower than for the heterogeneous membrane MA-40 containing ternary and quaternary amino groups. It is confirmed that the nature of ionogenic groups in membranes is a factor that determines the rate of water dissociation in systems with ion-exchange membranes.  相似文献   

17.
Polarization properties of electromembrane systems (EMS) consisting of a heterogeneous membrane, either the MK-41 phosphonic acid membrane or the MK-40 sulfonic acid membrane, and dilute sodium chloride solutions are investigated with the rotating membrane disk method. For the MK-41/0.01 M NaCl and MK-41/0.001 M NaCl EMS, effective ion transport numbers and partial current-voltage curves (CVC) are measured for sodium and hydrogen ions, and limiting-current densities and the diffusion-layer thickness are calculated as functions of the rotation rate of the membrane disk. With the theory of the overlimiting state of EMS, internal parameters of the systems under investigation—the diffusion-layer thickness, the space-charge distribution, and electric-field strengths in the diffusion layer and in the membrane—are calculated from experimentally obtained CVC and the dependence of effective transport numbers on current density. The catalytic influence of ionogenic groups on the dissociation rate of water is analyzed quantitatively. Partial CVC for H+ ions are calculated for the space-charge region in MK-40 and MK-41 membranes. Analogous CVC for bipolar membranes containing sulfonic acid and phosphonic acid groups are compared. The dissociation mechanism of water is the same in all EMS and is independent of the membrane type and the nature of the functional groups.  相似文献   

18.
The effect of electrolyte solutions on the characteristics of the current-voltage (I-V) curve in a cation-exchange membrane (CMX membrane, Tokuyama Soda, Inc.) was studied based on the concentration polarization and electroconvection theory. The study includes the limiting current density (LCD), plateau length, and the ratio of resistance of region III to region I of the I-V curve (R(3rd)/R(1st)). Different electrolyte solutions, HCl, LiCl, NaCl, KCl, CaCl(2), MgCl(2), and AlCl(3), were used in this study. The LCD values of the electrolytes were correlated with the diffusion coefficient of the cation (D(+)) and valence of the cation and anion (z(+), z(-)). Except for the HCl solution, the LCD values of the electrolytes increased linearly with D(+)(1-z(+)/z(-)), implying that the current in this region was governed by the concentration polarization phenomena. The deviation of the HCl solution from the linearity is due to a particular transport mechanism of the proton called the Grotthuss-type transport. The differences in the plateau length and the resistance ratio, R(3rd)/R(1st), with the electrolytes were explained by the Péclet number (Pe) representing a transport pattern in the electroconvection theory. The Péclet number is proportional to the Stokes radius of an ion. An electrolyte with a large Stokes radius has a shorter plateau length and a lower ratio of R(3rd)/R(1st) than those of an electrolyte with a small Stokes radius. Water-splitting measurements for the different electrolyte solutions in the CMX membrane revealed that the contribution of water splitting to the overlimting current was insignificant regardless of the electrolytes used in this study. However, when metal hydroxides, such as Al(OH)(3), formed on the surface of the membrane, significant water splitting was observed. Copyright 2001 Academic Press.  相似文献   

19.
采用TG/DTA、FT-IR和in situ DRIFT等技术对甘氨酸在高岭土表面的吸附和热缩合反应进行了表征, 考察了甘氨酸平衡浓度和溶液pH值对吸附行为的影响, 同时探讨了原位条件下甘氨酸的缩合反应历程. 结果表明, 溶液呈弱酸性时, 甘氨酸在高岭土上的吸附量最大, 但吸附等温线不符合Langmuir模型. 在强酸性、弱酸性和碱性溶液中, 吸附态的甘氨酸分别主要以阳离子、两性离子和阴离子形式存在. 弱酸性溶液中, 甘氨酸的—NH3+基团与高岭土表面的≡S—O−(S为Si或Al)基团之间的氢键作用是吸附的主要驱动力, 而强酸性溶液中, ≡S—O−基团的质子化, 以及碱性溶液中—NH3+向—NH2的转化, 是导致吸附量下降的主要原因. In situ DRIFT结果表明, 在110−160 ℃温区, 有明显的线式二肽形成; 随着温度升高至210 ℃时, 二肽进一步脱水, 形成环化缩合产物哌嗪二酮(DKP). 没有检测到硅酯类或铝酯类中间体的特征峰, 反应可能按氢键促进下的自缩合机理进行, 高岭土的存在使缩合反应温度有明显降低.  相似文献   

20.
The thickness of the diffusion boundary layer (DBL) in solution near the surface of an ion-exchange membrane is compared at current densities (δ0) much less than the limiting value and at the limiting current density (δlim). The initial linear part of the current-voltage curve (CVC) of the membrane and the initial part of its chronopotentiogram are used to calculate δ0. Values of δ0 are found in a flow-through cell with an active membrane area of 2 × 2 cm2 and 0.02 M NaCl solution for three membranes: AMX, Nafion-117, and MK-40. It is shown that δ0 is more than 20% less for Nafion-117 than for AMX and MK-40. Values of δ0 are close together for the latter two membranes and do not differ greatly from the value calculated from convective diffusion theory (the Leveque equation). In all cases, δ0 is significantly greater than δlim found from the value of the limiting current density by the method of intersecting tangents, which are drawn to the initial segment of the CVC and to the sloping plateau. The effects that determine the dependence of DBL thickness on not only hydrodynamic conditions, but also the state of the membrane surface, are discussed. The principal phenomenon responsible for the decrease in DBL thickness with increasing current is termed coupled convection, more likely, electroconvection. Among the significant properties of the surface are singled out its electrical heterogeneity and degree of hydrophobicity. The different rate of electroconvection near cation- and anion-exchange membranes is related to the Stokes radius of the counterions. The latter explains the well-known observation in the literature that the limiting current density in dilute NaCl solutions is approximately the same for cation- and anion-exchange membranes in spite of the fact that the mobility of Cl ions is approximately 1.5 times higher than that of Na+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号