首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Ba1 ? x Ca x )6Nb2O11 solid solutions were synthesized. The compositions were shown to be single-phase at 0.23 ≤ x ≤ 0.47 and have a double perovskite cubic structure with an incomplete oxygen sublattice. The interaction of solid solutions with water vapor and their electrical properties were studied. In dry atmosphere, these complex oxides were mixed oxygen-hole conductors. In humid atmosphere, they intercalated water and exhibited protonic conductivity. The influence of Ba/Ca isovalent substitution, the dynamics of the oxygen sublattice, and the concentration of intercalated water on the value and contribution of protonic and hole conductivity was analyzed.  相似文献   

2.
3.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

4.
Magnesium aluminate nanoparticles with different chromium concentration (0–12%) have been synthesized by a citrate–nitrate sol–gel route. X-ray diffraction studies confirmed the formation of single-phase cubic spinel structure excluding the presence of any secondary phase. Crystallite size of the synthesized nanoparticles was found to increase from 8.5 to 19.8 nm with the increase in Cr concentration. Fourier transformed infrared spectroscopic studies confirmed the presence of AlO6 group which led to the formation of MgAl2O4 spinel structure. Surface morphology of the sintered pellets was investigated with the help of a field emission scanning electron microscope which revealed the existence of both grain and grain boundary along with their aggregates. The dielectric constant, dielectric loss and ac conductivity were studied as a function of frequency of the applied electric field for different composition and their nature of variation with frequency has been elucidated on the basis of Maxwell–Wagner interfacial model. Impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of this spinel oxide. All the electrical parameters showed strong dependence on the nanostructural properties and were found to vary consistently with the increase of doping concentration.  相似文献   

5.
Magnesium and zinc ferrites have been prepared by the polymeric precursor method. The organic material decomposition was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The variation of crystalline phases and particle morphology with calcination temperature were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The colors of the ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes above 800°C, presenting a yellow- orange color with a reflectance peak at the 600–650 nm range, while zinc ferrite crystallizes at 600°C, with a reflectance peak between 650–700 nm, corresponding to the red-brick color.  相似文献   

6.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

7.
The protonation and deprotonation of the Nb2O5 surface has been followed in order to understand the reactions of surface of this catalyst. The simultaneous potentiometric and conductometric titrations had been carried by using 50 mL of water suspension of Nb2O5 40 g L−1. The oxide was entirely deprotonated when adding 0.4 mL NaOH 1 mol L−1, and later titrated with 0.1 mol L−1. The titration had supplied K 1 and K 2 and the obtained values were 3.24 × 10−3 and 4.17 × 10−8, respectively. The zero point charge was pHpcz = 4.94. The thermodynamic studies were carried out by using 50 mL of a 40 g/L Nb2O5 aqueous suspension with the pH adjusted to pHPZC value. The suspension was titrated with 0.5 mol/L of HNO3 or NaOH for protonation or deprotonation studies, respectively, in an isoperibol calorimeter CSC ISC-4300. Thus, the obtained thermodynamic values of the protonation and deprotonation of Nb2O5 were Δdp G = −37.60 kJ/mol, Δdp H = −23.72 kJ/mol and ΔdpS = 47 J/(mol K).  相似文献   

8.
Chlorine-substituted brownmillerite Ba1.95In2O4.9Cl0.1 was obtained from barium indate Ba2In2O5 by solid-phase synthesis. The ability to absorb water from the gas phase was confirmed by thermogravimetric studies. The transport properties were studied while varying the thermodynamic parameters of the external environment (T, pO2, pH2O). The chloride ions in the oxygen sublattice of barium indate Ba2In2O5 were found to affect the ion conductivity. In a humid atmosphere, the sample exhibited proton conductivity (E a = 0.54 eV), whose contribution became dominant below 300°C.  相似文献   

9.
Strontium barium niobate crystals with congruent melting composition Sr0.61Ba0.39Nb2O6 (SBN-61), both nominally pure and doped with Cr3+ и Ni3+ ions, have been investigated by neutron diffraction. Different strontium and barium contents as well as their different distribution over the Sr1, of Sr2 and Ba2 crystallographic sites of SBN-61 structure, caused by introduction of dopants, have been revealed. Coordination polyhedra of cations have been established based on the analysis of cation–anion internuclear distances together with the calculation of bond-valence sums for cations, which are equal to their formal charge. It was found that the Nb1 and Nb2 atoms are located in distorted octahedra with quadfurcated (the Nb1O6 polyhedron) or bifurcated (the Nb2O6 polyhedron) vertices, and the Sr1 atoms are located in a cuboctahedron with bifurcated vertices in the base plane. Different polyhedra have been revealed for the Sr2 and Ba2 atoms: Sr2 atoms are coordinated by 15 oxygen atoms to form a highly distorted five-capped pentagonal prism, whereas Ba2 atoms are located in a highly distorted three-capped trigonal prism with a coordination number 9. Comparison of interatomic and internuclear distances, determined by X-ray and neutron diffraction analyses, respectively, allowed to reveal a highly pronounced shift of electron density in Nb1 and Sr2 polyhedra, responsible for the covalent bond and properties of crystals. Location of Cr3+ и Ni3+ dopant ions in the SBN-61 structure as well as their formal charges has been discussed.  相似文献   

10.
Thermodynamic properties of melts of the CaB2O4-CaSiO3 and Ca2B2O5-CaSiO3 systems were determined by the method of high-temperature mass-spectrometry. The melts of these systems are characterized by negative deviations from the ideal behavior at 1800 K.  相似文献   

11.
Phase formation processes in the systems Ln2O3-SrO-Fe2O3 (Ln = La, Nd) in air in the temperature range 1200–1500°C were studied. The synthesis of the complex ferrites La2SrFe2O7 and Nb2SrFe2O7 involves the formation of the intermediate compounds LnFeO3 and LnSrFeO4 and occurs by the same mechanism as the synthesis of the corresponding aluminates, but much faster.  相似文献   

12.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

13.
14.
15.
Double phosphate Ba1.5Fe2(PO4)3 was synthesized and structurally studied. Single crystals were synthesized by the fusion method. Cubic crystals, Z = 4, space group P213, a = 9.866(1) Å. This structure is built of polyhedrons of four types: PO4 tetrahedrons, two virtually regular FeO6 octahedrons, BaO12 twelve-vertex polyhedrons, and BaO9 nine-vertex polyhedrons. These polyhedrons share common oxygen vertices to form three-dimensional [Fe2(PO4)3]3∞ framework containing barium atoms in cavities.  相似文献   

16.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

17.
It has been demonstrated that Co2V2O7 and InVO4 react with each other forming a new compound of the Co2InV3O11 formula, when their molar ratio is equal to 1:1, or among CoCO3, In2O3 and V2O5, mixed at a molar ratio of 4:1:3. This compound melts incongruently at the temperature of 960±5°C, depositing crystals of InVO4. It crystallizes in the triclinic system and the unit cell parameters amount to: a=0.6524(6) nm, b=0.6885(5) nm, c=1.0290(4) nm, α=96.5°, β=104.1°, γ=100.9°, Z=2. The phase equilibria being established in the Co2V2O7–InVO4 system over the whole components concentration range up to the solidus line were described.  相似文献   

18.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

19.
Results of thermodynamic calculations and kinetic studies of the reaction of zinc ferrite ZnFe2O4 and of a mixture of oxides, ZnO and Fe2O3, with chlorine and SO2 are presented.  相似文献   

20.
Glasses have been synthesized in the system SiO2–Al2O3–Na2O–AlF3–LaF3–Er2O3. A base glass (in mol% 67SiO2–9Al2O3–20Na2O–Al2F6–3La2F6) was modified by 0.5, 0.75, 1, 1.25, 1.5, 2 and 5 mol% Er2O3, respectively. Glasses were prepared by conventional fusion method from 20 g batches. The glass transition temperature (T g), the jump-like changes of the specific heat (ΔC p) accompanying the glass transition and the enthalpy of crystallization (ΔH) were calculated. DTA measurements clearly reveal that the increase of the Er2O3 content in the glass changes the effects of crystallization and diminishes the thermal stability of the glassy network. In the same time the changes in the transition temperature are observed. The formation of NaLaF4 and Na1.45La9.31(SiO4)6(F0.9O1.1) as a main phase was confirmed. The diminishing of the thermal stability was connected with erbium which incorporated into Na1.45La9.31(SiO4)6(F0.9O1.1) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号