共查询到20条相似文献,搜索用时 0 毫秒
1.
Formation of silver nanoparticles on shells of polyelectrolyte capsules using silver-mirror reaction
T. V. Bukreeva I. V. Marchenko B. V. Parakhonskiy Yu. V. Grigor’ev 《Colloid Journal》2009,71(5):596-602
Polymer capsules prepared by the successive adsorption of oppositely charged polyelectrolytes are modified by silver nanoparticles using the silver-mirror reaction. Substantial differences in the structure of nanocomposite polyelectrolyte shells of capsules formed on cores composed of polystyrene and CaCO3 are revealed by atomic force microscopy and transmission electron microscopy. The effect of the conditions of silver-mirror reaction (time and temperature) on the amount, size, and the distribution of silver nanoparticles over the capsule surface is studied. It is shown by small-angle X-ray scattering that, upon the formation of nanocomposite capsule shell on calcium carbonate microspherulites, the size of silver nanoparticles is limited primarily by the pore sizes of CaCO3 cores. 相似文献
2.
Georgieva R Moya S Donath E Bäumler H 《Langmuir : the ACS journal of surfaces and colloids》2004,20(5):1895-1900
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules. 相似文献
3.
V. A. Kirsh 《Colloid Journal》2007,69(5):615-619
The diffusion deposition of submicron aerosol particles in model filters consisting of fibers covered with permeable porous shells is studied. An ordered system of parallel cylinders arranged perpendicular to the flow is used as a model filter. The results of calculations are given for the dependences of the capture coefficient on the shell radius, the shell permeability, the packing density of the filters, the particle radius, and the flow velocity. Calculations are performed within a wide range of Peclet numbers. It is shown that the capture coefficient and the quality criterion γ of a filter increase with the diffusion mobility of particles and shell permeability, as well as that the dependence of the quality criterion on the radius of permeable shells has a maximum. It is also shown that the capture coefficients for fibers with porous shells, calculated using the cell model and the isolated row of fibers, almost coincide with one another. 相似文献
4.
Minullina RT Osin YN Ishmuchametova DG Fakhrullin RF 《Langmuir : the ACS journal of surfaces and colloids》2011,27(12):7708-7713
We report the surface modification of microscopic live multicellular nematodes Caenorhabtidis elegans with polyelectrolyte multilayers (pure and doped with 20 nm gold nanoparticles) and the direct magnetic functionalization of nematodes with biocompatible magnetic nanoparticles. Magnetically functionalized "ironoxideclad" nematodes can be effectively separated and moved using an external magnetic field. The surface-functionalized nematodes preserve their viability and reproduction. 相似文献
5.
We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60±20 nm which increased to 100±20 nm when the concentration of AgNO(3) increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. 相似文献
6.
We report on bulk and surface properties of centrifuged nonstoichiometric polyelectrolyte complex (PEC) dispersions. PECs were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of 0.6 and polymer concentration >/=1 mmol/l. Centrifugation of initial PEC dispersions revealed three phases: supernatant (SUP), coacervate (COAC), and an insoluble precipitate. Mass, turbidity, particle hydrodynamic radii (R(h)), and the titratable charge amount were determined for those phases. The turbid COAC phase consisted of 200-nm nanoparticles and carried 60% of the polymer mass and 20% of the titratable charge amount of the initial PEC dispersion. The SUP phase showed no turbidity and no such nanoparticles, but carried 80% of the initial titratable charge amount, presumably caused by excess polycations. Furthermore, linear dependences of turbidity and R(h) on COAC concentration was observed. COAC adsorption was studied at polyelectrolyte multilayer (PEM) modified silicon surfaces in dependence on both adsorption time and concentration using attenuated total-reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The adsorption data were fitted by the simple Langmuir model. Comparison of COAC particles and polystyrene latices revealed similar adsorption features. SEM and AFM measurements resulted in hemispherically shaped adsorbed COAC particles with coverages >/=25%, whose calculated volumes correlated well with those in dispersion obtained by PCS. 相似文献
7.
de la Garza L Saponjic ZV Dimitrijevic NM Thurnauer MC Rajh T 《The journal of physical chemistry. B》2006,110(2):680-686
Control of surface states of titanium dioxide nanoparticles using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) and 3,4-dihydrophenylacetic acid, which act as ligands to the undercoordinated surface sites (carrier traps), is demonstrated by electrochemical techniques. The deepest traps were found to be most reactive and are selectively removed by the addition of the ligands which enhances the kinetics of electron accumulation in the film. Furthermore, a shift in the Fermi level to more positive potentials was detected for electrodes modified with the negatively charged ligand (3,4-dihydrophenylacetic acid) compared to that of electrodes modified with the positively charged ligand (dopamine). The presence of the negative charge on the ligand also contributed to the underpotential of hydrogen evolution on 3,4-dihydrophenylacetic acid-modified electrodes. 相似文献
8.
Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst. 相似文献
9.
A hybrid assembly composed of thin multi-walled carbon nanotubes (t-MWCNT) and titanium dioxide (TiO(2)) has been prepared by using "click" chemistry for photocatalytic applications. TiO(2)-decorated t-MWCNT hybrids with anatase phase TiO(2) were obtained from the reaction of an azide moiety-containing TiO(2) with alkyne-functionalized t-MWCNTs. The hybrids were systematically characterized using Fourier transform infrared spectroscopic (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrum (EDX), and X-ray diffraction (XRD) measurements. The nanohybrid has been proved to be highly active and robust for photocatalytic degradation of methyl orange. The click coupling approach is a simple and convenient route to efficiently assemble TiO(2) on the surface of carbon nanotubes, and can be extended to obtain many other nanoparticle hybrids based on carbon nanotubes. 相似文献
10.
11.
本文对近几年有关纳米二氧化钛粉体及薄膜的制备研究进行综述。重点介绍及评述了以无机钛盐和有机钛盐为前驱体制备纳米二氧化钛粉体及利用自组装方法制备二氧钛薄膜的最新研究成果。对今后研究工作的趋势进行了探讨。 相似文献
12.
Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity 总被引:9,自引:0,他引:9
Mesoporous titanium dioxide nanosized powder with high specific surface area and anatase wall was synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting materials were characterized by XRD, nitrogen adsorption, FESEM, TEM, and FT-IR spectroscopy. The as-synthesized mesoporous TiO2 nanoparticles have mean diameter of 17.6 nm with mean pore size of 2.1 nm. The specific surface area of the as-synthesized mesoporous nanosized TiO2 exceeded 430 m2/g and that of the samples after calcination at 600 degrees C still have 221.9 m2/g. The mesoporous TiO2 nanoparticles show significant activities on the oxidation of Rhodamine B (RB). The large surface area, small crystalline size, and well-crystallized anatase mesostructure can explain the high photocatalytic activity of mesoporous TiO2 nanoparticles calcined at 400 degrees C. 相似文献
13.
Characterization of titanium dioxide nanoparticles using molecular dynamics simulations 总被引:1,自引:0,他引:1
Naicker PK Cummings PT Zhang H Banfield JF 《The journal of physical chemistry. B》2005,109(32):15243-15249
Molecular dynamics simulations of titanium dioxide nanoparticles in the three commonly occurring phases (anatase, brookite, and rutile) are reported. The structural properties inferred by simulated X-ray diffraction patterns of the nanoparticles were investigated. The titanium-oxygen bond length as a function of size, phase, and temperature was determined and was found to be dependent on the coordination environment of the titanium and independent of phase and size. The equilibrium Ti-O bond length is 1.86 A for a four-coordinated titanium ion, 1.92 A for a five-coordinated titanium ion, and 1.94 A for an octahedral titanium ion. Smaller nanoparticles are characterized by a higher fraction of titanium ions that are four and five coordinated, due to the larger surface area-to-volume ratios. The surface energies for anatase, rutile, and brookite particles were reported. The surface energy of the nanoparticle increases and approaches a constant value as the particle gets bigger. The surface energies of small rutile particles are higher than that for anatase particles of a similar size, consistent with anatase being the more stable phase of nanocrystalline titanium dioxide. 相似文献
14.
Sol-gel synthesis of titania typically produces a mixture of brookite and anatase. Rietveld refinements were used to systematically track the brookite content and particle size as functions of synthetic variables. Results demonstrate that brookite content and anatase particle size decrease with decreasing Ti/H(2)O ratios. In syntheses at pH 3, the addition of HCl resulted in increased amorphous content compared to samples synthesized using HNO(3). Similar amorphous contents were observed for particles prepared at pH 6-9. Hydrothermal aging for 4 h at 200 degrees C of sol-gel products containing substantial amorphous titania resulted in higher brookite content than did hydrothermal aging of sol-gel products containing little to no amorphous titania. Finally, dialysis prior to hydrothermal aging appeared to inhibit phase transformation from brookite to anatase in aged materials. Results presented demonstrate that considerable control over the relative anatase and brookite contents can be achieved through control of synthetic variables. 相似文献
15.
The changes in the morphology and the mechanical properties of hollow polyelectrolyte multilayer capsules made from poly(styrenesulfonate)/poly(allylamine hydrochloride) in response to added salt were investigated. We found that capsules shrink in response to salt exposure. The effect depends strongly on the nature of the salt added and follows trends of the Hoffmeister series, with weakly hydrated cations inducing the strongest shrinking. For NaCl, we have investigated additional effects on capsule mechanical properties that are occurring above a 3 M salt concentration and we found that the morphological changes are accompanied by a pronounced softening of the capsule wall material, which we can quantify by analyzing the force response of capsules in the prebuckling regime. This shows that salts can act as plasticizers in the multilayers and induce annealing effects. 相似文献
16.
A TiO2 nanoparticle (TiO2 NP)-coated open-tubular column for the capillary electrochromatographic separation of proteins is described. The surface chemistry of the TiO2 NPs on the inner wall of the fused silica was significantly affected by the running buffer. By varying of the phosphate buffer pH, only cathodic EOF was indicated. The results showed that TiO2 NPs are existed as a complexed form with the buffer ligand. Good separation of conalbumin (ConA), apo-transferrin (apoTf), ovalbumin (OVA), and BSA could be achieved with phosphate buffer (40 mM, pH 8.0) and an applied voltage of 15 kV. Five peaks of glycoisoforms of OVA were observed under these conditions. In comparison with the retention behavior of the analytes on the bare fused-silica column, the new column's high resolving power seems to be predominantly derived from the ligand exchange of the analytes with the phosphate adsorbed onto the TiO2 NPs. The method was also used to separate egg-white proteins. Both acidic and basic proteins in egg white were separated in a single run. The microheterogeneities of OVA could also be found in it. The separation efficiency for the main peak of OVA in egg white was around 10,000 plates/m. 相似文献
17.
Ardeshir Khazaei Ahmad Reza Moosavi‐Zare Fatemeh Gholami Vahid Khakyzadeh 《应用有机金属化学》2016,30(8):691-694
Magnetic core–shell titanium dioxide nanoparticles (Fe3O4@SiO2@TiO2) were applied for the efficient preparation of 1,2,4,5‐tetrasubstituted imidazole derivatives by the one‐pot multi‐component condensation of benzil with aldehydes, primary amines and ammonium acetate under solvent‐free conditions. The catalyst was synthesized and studied using several techniques including X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Xiaogang Sun Jun Xing Jingping Qiu 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2016,90(6):1151-1156
A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV–Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. 相似文献
19.
Shree Mishra Prafulla K. Jha Arun Pratap 《Journal of Thermal Analysis and Calorimetry》2012,107(1):65-68
In this article, we have studied the size effect on glass transition and Kauzmann temperature of spherical TiO2 nanoparticles using Arrhenius relation and Lindemann’s criteria under their dynamic limit. The melting point of nanoparticles decreases with decrease in size of the nanoparticles. The glass transition temperature and Kauzmann temperature are analyzed through the size effect on the melting temperature. The glass transition and Kauzmann temperatures decrease with the decrease in size of TiO2 nanoparticles. 相似文献
20.
Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension 总被引:1,自引:0,他引:1
Lin J Lin Y Liu P Meziani MJ Allard LF Sun YP 《Journal of the American Chemical Society》2002,124(38):11514-11518
Titanium dioxide (TiO(2)) nanoparticles were synthesized by controlled hydrolysis of titanium alkoxide in reverse micelles in a hydrocarbon solvent. Upon annealing in situ in the presence of the micelles at temperatures considerably lower than those required for the traditional calcination treatment in the solid state, the TiO(2) nanoparticles became highly crystalline but still maintained the same physical parameters and remained in a stable suspension. Thus, the method has allowed the preparation of crystalline TiO(2) nanoparticles that are monodispersed in the same way as they are initially produced in the microemulsion. Effects of the fluid properties on the crystallization of nanoparticles are discussed. 相似文献