首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six polyoxometalate-based (POM) hybrid materials based on octamolybdate building blocks and metal-organic fragments with flexible multidentate ligand, namely [Cu(II)(2)(ttb)(2)(β-Mo(8)O(26))(H(2)O)(2)]·2H(2)O (1), Cu(I)(4)(ttb)(2)(β-Mo(8)O(26))(H(2)O) (2), [Cu(I)(4)(ttb)(3)(β-Mo(8)O(26))] (3), [Ni(2)(ttb)(2)(β-Mo(8)O(26))(H(2)O)(6)]·2H(2)O (4), [Zn(2)(ttb)(2)(α-Mo(8)O(26))(H(2)O)(2)] (5), and [Ag(4)(ttb)(2)(β-Mo(8)O(26))] (6), where ttb = 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethyl benzene, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, TGA, IR spectra, and electrochemistry. Compounds 1 and 2 exhibit three-dimensional (3D) 2-fold interpenetrating frameworks with (3,6)-connected (4(1)·6(2))(4(2)·6(10)·10(3)) and (3,4)-connected (6(2)·8(1))(2)(6(2)·8(4)) topologies, respectively. We are not aware of any other examples of interpenetrating (3,6)- and (3,4)-connected frameworks which involves the octamolybdates. Compound 3 shows a rare two-dimensional (2D) 2-fold interpenetrating network structure. In compound 4, a 3D supramolecular framework with the channels is constructed by the hydrogen-bonding interactions between (β-Mo(8)O(26))(4-) polyanions and the Ni-ttb double layers, in which the guest (β-Mo(8)O(26))(4-) anions are included. If ZnO interactions are considered, the structure of 5 is a 3D (3,4)-connected framework with (4·8(2))(4·8(2)·10(3)) topology. In 6, the ttb ligand as a tetradentate ligand links the Ag atoms to yield a 2D POM-based network. By careful inspection of the structures of 1-6, it can be seen that the ttb ligand, the metal ion and the coordination mode of the octamolybdate anion play important roles in the formation of the POM-based MOFs.  相似文献   

2.
The unique porous metal-organic framework {KCo3(C6H4O7)(C6H5O7)(H2O)2.8H2O}8 (1), which exhibits an unprecedented infinite 3D (3,6)-connected decorated anatase net, has been obtained by hydrothermal reaction. Upon dehydration, the compound retains crystallinity and exhibits a type I N2 sorption isotherm, characteristic of a microporous solid with apparent Langmuir surface area 939 m2/g and pore volume 0.31 cm3/g. Magnetic measurements for both 1 and dehydrated 1 show the spin-canted antiferromagnetic state below 5 K and a magnetic hysteresis loop at 2 K. Thus, dehydrated 1 represents the first metal-organic framework for which microporosity and a spin-canted antiferromagnetic state coexist, which demonstrates that the self-assembly of organo-polymetal clusters and metal ions can provide a potential route to magnetic porous metal-organic frameworks.  相似文献   

3.
Xiang S  Huang J  Li L  Zhang J  Jiang L  Kuang X  Su CY 《Inorganic chemistry》2011,50(5):1743-1748
Two nanotubular metal-organic frameworks (MOFs), {Cu(L1)·2H(2)O·1.5DMF}(∞) (1) and {Cu(2)(L2)(2)(H(2)O)(2)·7H(2)O·3DMF}(∞) (2), with novel topologies have been constructed based on Cu(2+), 5-(pyridin-4-yl)isophthalic acid (L1) and 5-(pyridin-3-yl)isophthalic acid (L2), respectively. Two MOFs were characterized by IR spectroscopy, thermogravimetry, single-crystal, and powder X-ray diffraction methods. Network analysis reveals a two-nodal (3,6)-connected (4·6(2))(2)(4(2)·6(10)·8(3)) net and a three-nodal (3,4)-connected (4·8(2))(4)(4(2)·8(2)·10(2))(2)(8(4)·12(2)) net. Interpenetration is inherently prevented by both of the topologies of the frameworks. The porosity of MOF 1 was confirmed by N(2) and CO(2) gas adsorption investigations. MOF 1 exhibits remarkable hydrogen sorption hysteresis at low pressure and a H(2) uptake capacity of 1.05 wt% at 77 K and 1 atm.  相似文献   

4.
Six novel metal-organic frameworks (MOFs), {Mn(bpydb)(bpyHdbH)}(n) (1) {[Co(2)(bpydb)(2)](H(2)O)(0.5)}(n) (2), {[Ni(0.5)(bpydbH)(H(2)O)](DMF)(2)}(n) (3), {[Cu(2)(bpydb)(2)](H(2)O)(0.5)}(n) (4), {Zn(bpyHdb)(2)}(n) (5) and {[Cd(0.5)(bpydb)(0.5)(DMF)](H(2)O)}(n) (6), were successfully synthesized by assembling transition metal salts with trigonal heterofunctional ligand 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid (bpydbH(2)) under hydrothermal and/or solvothermal conditions. Compound 1 features a rare 4-fold interpenetrating (3,5)-connected framework with hms-type topology. Isostructural compounds 2 and 4, constructed by M(2)(COO)(4) secondary building units, exhibit a robust 3D framework with alb topological type in 2-fold interpenetrating mode. Compound 3 consists of 2D (4,4) networks, which are further assembled into the new topological framework with the symbol (5(3)·6(2)·8)(5(3)·6(3))(2) through O-HO interactions. Compound 5 manifests a novel 4-connected interpenetrating framework, constructed by 2D (4,4) layers and interbedded N-HO interactions. Non-interpenetrating honeycomb networks are observed in compound 6, and further packed into a 3D framework featuring 1D channels. The magnetic susceptibility of compound 2 indicates antiferromagnetic interactions between cobalt ions. The photoluminescent properties of 5 and 6 were investigated in the solid state at room temperature.  相似文献   

5.
A series of polyoxometalates (POMs)-based coordination polymers, namely, {[Cu(2,3-Me2pz)(2,5-Me2pz)0.5]4(SiW12O40)(2,5-Me2pz)}n (2,3-Me2pz = 2,3-dimethylpyrazine; 2,5-Me2pz = 2,5-dimethylpyrazine; 1), {[Cu2(4,4'-bipy)4(H2O)4](SiW12O40)(H2O)18}n (4,4'-bipy = 4,4'-bipyridine; 2), {[Cu(2-Mepz)1.5]3(PMo12O40)(H2O)3.5}n (2-Mepz = 2-methylpyrazine; 3), {[Ag(2,3-Me2pz)1.5]4(SiW12O40}n (4), {[Cu(pz)1.5]4(SiW12O40)(H2O)3}n (pz = pyrazine; 5), {[Cu(2,3-Me2pz)1.5]4(SiW12O40)}n (6), {[Cu(4,4'-bipy)1.75]4(SiW12O40)(H2O)2}n (7), and {[Cu2(4,4'-bipy)4(H2O)4](SiW12O40)(4,4'-bipy)2(H2O)4}n (8), were synthesized through direct incorporation between POMs and the voids of the 2D network. Crystal structural analysis reveals that the relationship between the size of the void of the 2D network and that of POMs is of key importance for successful synthesis of POMs-based open metal-organic frameworks. Guest replacement shows that the pore size of the framework constructed through direct incorporation between POMs and the voids of the 2D network is very sensitive to guest molecules.  相似文献   

6.
Six new metal-organic frameworks [Cu(obba)(bimb)·(obbaH(2))](n) (1), [Cu(obba)(bimb)](n) (2), [Zn(2)(obba)(2)(bimb)(2)(DMF)(2)(H(2)O)(3.5)](n) (3), [Ni(3)(2,2',4,4'-bptcH)(2)(bimb)(2)(H(2)O)(2)·(H(2)O)(2)](n) (4), [Ni(2)(bimb)(3)(H(2)O)(6)·(aobtc)·(DMF)(2)·(H(2)O)(2)](n) (5) and [Cd(3,3',4,4'-bptcH(2))(H(2)O)·(bimb)](n) (6), were obtained by reactions of 4,4'-bis(1-imidazolyl)biphenyl (bimb) and multi-carboxylic acids of 4,4'-oxybis(benzoic acid) (obbaH(2)), 2,2',4,4'-biphenyltetracarboxylate acid (2,2',4,4'-bptcH(4)), azoxybenzene-3,3',5,5'-tetracarboxylic acid (aobtcH(4)), and 3,3',4,4'-biphenyltetracarboxylate acid (3,3',4,4'-bptcH(4)) with corresponding metal salts under hydro/solvothermal conditions, respectively. Complexes 1-3 have entangled structures with different topologies: 1 is a 3-fold interpenetrating NbO three-dimensional (3D) network; 2 is a 3-fold interpenetrating dmp 3D net; 3 is a 6-fold interpenetrating dia 3D chiral net containing rare 1D helical chains with the same handedness. Complex 4 is an uninodal 6-connected network with a Sch?fli symbol of (4(8)6(4)8(3)) based on the trinuclear Ni(II) subunits, while complexes 5 and 6 are 1D chains. Interestingly, compound 6 represents the rare example of MOFs that exhibit high photocatalytic activity for dye degradation under visible light and shows good stability towards photocatalysis. Complexes 3 and 6 exhibit intense blue emissions in the solid state at room temperature whereas 3 appears to be a good candidate of novel hybrid inorganic-organic NLO material.  相似文献   

7.
Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.  相似文献   

8.
Reaction of a semi-rigid tripodal ligand 1,1',1'-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)tripyridinium-4-olate) (TTP) with Ln(3+) (Ln = Eu, Gd) afforded rare (3,12)-connected metal-organic frameworks (MOFs). A topological simplification of such highly connected 3D MOFs on the basis of 2D CdI(2) (3,6)-nets is proposed. The luminescent and anion exchange properties of the compounds were determined.  相似文献   

9.
用2,6-二氰基吡啶与叠氮化钠在水热条件下原位合成了5种6一四氮唑.2-吡啶甲酸配合物:【Ni2(tepc)2(H2O)2】(1),[CO2(tepc)2(H2O)4]·2H2O(2),【CO2(tepc)2(H2O)4】·4H2O(3),【Cu2(tepc)2(H2O)2](4)和{【Mn(tepc)(H20)2]·2H2O}n(5)(tepc=6一(tetrazol-5-y1)picolinate).这些配合物中配体均以三齿螯合的方式与金属离子配位.配合物1-4形成了双核离散型配合物,双核分子通过氢键作用连接成三维超分子结构.配合物5中的单核螯合单元间通过Mn-O配位键连接成为一维配位聚合物链,链间通过氢键连接成为整个配合物的晶体结构.氢键拓扑网络分析表明,配合物1和2可简化成NaCI型的6-连接pcu拓扑网,配合物3则可简化成一种8.连接hex拓扑网,配合物4可简化成一种新型双结点十连接拓扑网络(3^10.4^26·5^8·6)(3^8.4^26.5^10.6),配合物5则可简化成一种新型的(5,10)双结点三维网络(3^2·4^7.5)(3^4.4^21.5^13.6^7).本文不仅详细地分析了这些配合物晶体结构中氢键与拓扑网络之间的关系,而且还讨论了氰基的水解反应与四氮唑成环反应间的关系,以及金属离子的电子特征、结晶条件与晶体结构之间的关系.  相似文献   

10.
Xu N  Shi W  Liao DZ  Yan SP  Cheng P 《Inorganic chemistry》2008,47(19):8748-8756
Lanthanide coordination polymers were synthesized from Pr(III), Nd(III), and Gd(III) salts; 2-hydroxynicotinic acid (Hnica); and MnSO 4.H 2O under hydrothermal conditions. In the absence of (CH 3) 3CCOONa, 1D polymers with an infinite Ln(III)-O-Ln(III) chain structure, [Pr(Hnica)(H 2O) 2SO 4] n ( 1), [Nd(Hnica)(H 2O) 2SO 4] n ( 2), and [Gd(Hnica)(H 2O) 2SO 4] n ( 3), were generated. When (CH 3) 3CCOONa was added to the synthetic systems, 2D coordination polymers {[Pr 3(Hnica) 6(H 2O) 9].3H 2O.SO 4.NO 3} n ( 4), {[Nd 3(Hnica) 6(H 2O) 9].3H 2O.SO 4.NO 3} n ( 5), and {[Gd(Hnica) 2(H 2O) 2]ClO 4.H 2O} n ( 6) were obtained. Complexes 4 and 5 both exhibit Kagome lattice structure, while 6 displays a rhombic grid structure. All complexes were characterized by elemental analysis, IR spectra, UV-vis spectra, and X-ray single-crystal diffraction. The variable-temperature magnetic susceptibility studies reveal ferromagnetic interactions between gadolinium(III) ions in 3 and 6 and antiferromagnetic interactions in 1, 2, 4, and 5.  相似文献   

11.
Song L  Li J  Lin P  Li Z  Li T  Du S  Wu X 《Inorganic chemistry》2006,45(25):10155-10161
Reactions of [WES3]2- (E = S, O) with CuX (X = NCS, CN, I) in the presence of bix (bix = 1,4-bis(imidazole-1-ylmethyl)benzene) in DMF or CH3CN resulted in the formation of two novel 2D --> 3D interpenetrating coordination polymers [S2W2S6Cu4(bix)2]n (1) and {[WS4Cu4(NCS)2(bix)3].CH3CN}n (2), a noninterpenetrating 3D polymer {[WS4Cu2(bix)].DMF}n (3), and two 2D sheet polymers [WS4Cu3(CN)(bix)]n (4) and {[OWS3Cu3(bix)2][I].DMF.2H2O}n (5), depending on the reaction temperature and the reagents used. Compound 1 contains a hexagonal prism of W2Cu4S6 cluster core, which serves as a 4-connecting node to link equivalent nodes via bix ligands, forming a 2D (4,4) net. In 2, a WCu4S4 core, which also acts as a 4-connecting node, connects the neighboring nodes either through single or double bix bridges, affording a different 2D (4,4) sheet. Inclined interpenetration occurs between two stacks of 2D sheets in the total structure of 1, while 2 involves a parallel interpenetration between the adjacent layers, both creating a 3D network. Compounds 1 and 2 represent the first examples of interpenetrating (4,4) frameworks with clusters as nodes and bidentate pyridyl-based ligands as linkers. Unlike 1 and 2, compound 3 has a noninterpenetrating 3D network, which is composed of the inorganic 1D (WS4Cu2)n chains linked by cis and trans bix ligands. Compound 4 features an inorganic 1D (WS4Cu3)n chain structure, which is linked by CN groups and bix ligands to form an infinite 2D network. Compound 5 is a 2D layer polymer with large inner cavities.  相似文献   

12.
Six new coordination polymers, namely {[Zn(btec)(0.5)(btmb)]·2H(2)O}(n) (1), {[Co(btec)(0.5)(btmb)(H(2)O)]·3H(2)O}(n) (2), {[Cu(btec)(0.5)(btmb)]·H(2)O}(n) (3), {[Cu(4)(btc)(4)(btmb)(4)]·H(2)O}(n) (4), {[Co(3)(bta)(2)(btmb)(2)]·2H(2)O}(n) (5), [Co(Hbta)(btmb)](n) (6) (H(4)btec = 1,2,4,5-benzenetetracarboxylate, H(3)btc = 1,3,5-benzenetricarboxylate, H(3)bta = 1,2,4-benzenetricarboxylate and btmb = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl), have been successfully synthesized under hydrothermal conditions. All these complexes were structurally determined by single-crystal X-ray diffraction, elemental analysis, IR, TGA and XRD. Crystal structural analysis reveals that 1 is the first example of an unusual 3D framework with (8(6)) topology containing a 2D molecular fabric structure. Complex 2 exhibits a 3D NbO network with (6(4)·8(2)) topology. In 3, Cu(II) ions are coordinated by anti-conformational btmb ligands to form left- and right-handed double helices, which are further bridged by the 4-connected btec(4-) anions to give a 3D porous network. Complex 4 presents a rare 3D gra network structure with (6(3))(6(9)·8) topology. 5 and 6 were obtained through controllable pH values of solution, 5 features a scarce binodal (3,8)-connected tfz-d framework with the trinuclear Co(II) clusters acting as nodes, whereas 6 has an extended 2D 4(4) grid-like layer and the adjacent 2D layers are interconnected by strong hydrogen bonding interactions into a 3D supramolecular framework. The structural diversities indicate that distinct organic acid ligands, the nature of metal ions and the pH value play crucial roles in modulating the formation of the resulting coordination complexes and the connectivity of the ultimate topological nets. Moreover, magnetic susceptibility measurement of 5 indicates the presence of weak ferromagnetic interactions between the Co(II) ions bridged by carboxylate groups.  相似文献   

13.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

14.
通过扩散法合成了一个新的配位聚合物{[Cu2(OH)(btre)1.5(1,2,4-btc)]·13H2O}n1·13H2O)(btre=1,2-二(4H-1,2,4-三唑)乙烷,1,2,4-btc=1,2,4-苯三甲酸根)。测试了1·13H2O的晶体结构,并用红外光谱、元素分析、粉末X射线衍射对其进行表征。单晶X射线衍射表明1是基于四核铜簇[Cu4μ2-OH)2N12]构筑的10-连接的3D框架,其拓扑符号为312·428·55。研究了1·13H2O的热稳定性以及对甲基橙的催化降解作用。  相似文献   

15.
Along with our recent investigation on the flexible ligand of H(2)ADA (1,3-adamantanediacetic acid), a series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(3)(ADA)(3)(H(2)O)(2)](n)·5nH(2)O (1), [Zn(ADA)(4,4'-bipy)(0.5)](n) (2), [Zn(2)(ADA)(2)(bpa)](n) (3), [Zn(2)(ADA)(2)(bpa)](n) (4), [Zn(2)(ADA)(2)(bpp)](n) (5), [Cd(HADA)(2)((4,4'-bipy)](n) (6), [Cd(3)(ADA)(3)(bpa)(2)(CH(3)OH)(H(2)O)](n) (7), and [Cd(2)(ADA)(2)(bpp)(2)](n)·7nH(2)O (8) have been synthesized and structurally characterized (where 4,4'-bipy = 4,4'-dipyridine, bpa = 1,2-bis(4-pyridyl)ethane and bpp = 1,3-bis(4-pyridyl)propane). Due to various coordination modes and conformations of the flexible dicarboxylate ligand and the different pyridyl-containing coligands, these complexes exhibit structural and dimensional diversity. Complex 1 exhibits a three-dimensional (3D) framework containing one-dimensional (1D) Zn(II)-O-C-O-Zn(II) clusters. Complex 2 exhibits a 2D structure constructed by 1D double chains based on [Zn(2)ADA(2)] units and a 4,4'-bipy pillar. Complexes 3 and 4 possess isomorphic 2D layer structures, resulting from the different coordination modes of carboxylate group of ADA ligands. Complex 5 features a 2D 4(4) layer in which ADA ligands and Zn(II) atoms construct a 1D looped chain and the chains are further connected by bpp ligands. Complex 6 is composed of 1D zig-zag chains that are entangled through hydrogen-bonding interactions to generate a 2D network. Complex 7 is a rare (3,5)-connected network. Complex 8 possesses a 3D microporous framework with lots of water molecules encapsulated in the channels. The structural diversity of the complexes perhaps mainly results from using diverse secondary ligands and different metal centre ions, and means the assistant ligand and metal centre play important roles in the design and synthesis of target metal-organic frameworks. This finding revealed that ADA could be used as an effective bridging ligand to construct MOFs and change coordination modes and conformational geometries in these complexes. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.  相似文献   

16.
Du M  Zhang ZH  Zhao XJ  Xu Q 《Inorganic chemistry》2006,45(15):5785-5792
Four novel Zn(II) and Cd(II) metal-organic coordination polymers with a versatile building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (Hpyt) have been prepared under different conditions. [Zn3(pyt)4(OH)2]n (1) and [Cd(pyt)(HCOO)]n (3) were obtained through a solvothermal method, whereas {[Zn(pyt)2(H2O)(2)].(DMF)2}n (2) and {[Cd(pyt)2].CHCl3}n (4) were isolated under general conditions. X-ray single-crystal diffraction indicates that the anionic ligand pyt adopts a thioamide isomer in 1, 2, and 4, but a thiolate form in 3. Four types of binding modes involving monodentate (eta-N(oxa)), bidentate (mu-N(py),N(oxa), or mu-N(py),S,S) and tridentate (mu-N(py),N(oxa),S) are observed. The discrepancy of the synthetic routes and metal-coordination preferences facilitates the production of the final crystalline materials with distinct network structures, including a 1D zigzag array of 1 with dangling arms, a common 2D (4,4) coordination layer of 2, a decorated 3D alpha-Po network of 3, and an unprecedented (3,6)-connected 3D framework of 4 with a (4(2).6)2(4(2).6(2).8(7).10(2)) topology. Notably, the hydrolysis of DMF solvates leads to the formation of formate ions, being a component in the structure of 3. Complexes 2 and 4 show 1D channels in which the solvates are accommodated, and even after the exclusion of these guests, the porous host frameworks are still retained. Thermal stability and gas adsorption properties have also been studied.  相似文献   

17.
In our efforts to construct new metal-organic frameworks (MOFs) by template-directing method, a new cadmium oxalate, [Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O (denoted HNU-1), has been synthesized under hydrothermal condition in the presence of Co(NH3)6Cl3. The crystal structure of HNU-1 was determined by single-crystal X-ray diffraction (monoclinic, C2/c), a = 11.126(2)Å, b = 17.361(4)Å, c = 16.119(3)Å, β = 102.40(3)°, V = 3040.8(10)Å3 and Z = 8. The open framework of HNU-1 contains 12-ring channels and exhibits a 5-connected sqp topological network with dinuclear Cd(Ⅱ) clusters acting as nodes. The Co(NH3)63+ cations and unusual hydrogen-bonded (H2O)4 clusters are found in the 12-ring channels with an alternative arrangement. It is believed that the (H2O)4 clusters play a co-templating role in the crystallization of HNU-1.  相似文献   

18.
Two coordination compounds with a flexible ligand N,N?-diacetic acid imidazolium(HDAM),{[Co(trans-DAM)(bipy)(H2O)2](OH)·4H2O}n 1 and {[Cd(trans-DAM)(bipy)(H2O)](NO3)?2H2O}n 2(bipy = 4,4'-bipyridine),were prepared and characterized by single-crystal X-ray diffraction.Compound 1 crystallizes in monoclinic,space group P2/n with a = 7.589(6),b = 11.444(2),c = 12.894(3),β = 90.99(3)°,V = 1119.8(4)3,Z = 4,C8.5H14N2O5.5Co0.5,Mr = 261.68,Dc = 1.552 g/cm3,F(000) = 546,μ = 0.832 mm-1,the final R = 0.0657 and wR = 0.1958.Compound 2 crystallizes in the monoclinic C2 space group with a = 17.479(4),b = 11.689(2),c = 11.670(2),β = 117.13(3)°,V = 2121.9(7)3,Z = 4,C17H21N5O10Cd,Mr = 567.79,Dc = 1.777 g/cm3,F(000) = 1144,μ = 1.096 mm-1,the final R = 0.0233 and wR = 0.0638.In 1,the Co(II) ions are linked by μ2-trans-DAM-and bipy ligands to build a 2D(4,4) rectangular grid layer,exhibiting a 4-connected sql net.As for 2,μ3-trans-DAM-and bipy bridge Cd(II) ions form a 2D double-layer,consisting of a couple of(4,4) grid layers,which can be viewed as a(3,4)-connected network.In both compounds,the 2D structures are stabilized by hydrogen bonding interactions to give 3D supramolecular frameworks.Additionally,FT-IR spectroscopy,UV-Visible spectroscopy,and the fluorescent properties are discussed.  相似文献   

19.
Xia J  Zhao B  Wang HS  Shi W  Ma Y  Song HB  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(9):3450-3458
3,5-pyrazoledicarboxylic acid (H3L) reacts with nitrate salts of lanthanide(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) under hydrothermal conditions to form a series of lanthanide polymers 1-9. These nine polymers have the same crystal system of monoclinic, but they exhibit three different kinds of metal-organic framework structures. The complexes {[Ln2(HL)3(H2O)4].2H2O}n (Ln=Pr (1), Nd (2), and Sm (3)) were isostructural and exhibited porous 3D frameworks with a Cc space group. The complexes {[Ln2(HL)3(H2O)3].3H2O}n (Ln=Eu (4), Gd (5), and Tb (6)) were isostructural and built 2D double-decker (2DD) frameworks with a P21/c space group. The complexes {[Ln(HL)(H2L)(H2O)2]}n ((Ln=Dy (7), Ho (8), and Er (9)) were also isostructural and formed 2D monolayer (2DM) frameworks with a P21/n space group. The structure variation from the 3D porous framework to the 2D double-decker to the 2D monolayer is attributed to the lanthanide contraction effect. Notably, six new coordination modes of 3,5-pyrazoledicarboxylic acid were observed, which proved that 3,5-pyrazoledicarboxylic acid may be used as an effective bridging ligand to assemble lanthanide-based coordination polymers. The photophysical and magnetic properties have also been investigated.  相似文献   

20.
Two novel metal-organic frameworks (MOFs)--[Mn(titmb)(N3)2] x 1.5H2O (1) and [Mn3(titmb)2(C2O4)3(H2O)] x 10H2O (2)--were obtained by reactions of the flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (titmb) with Mn(OAc)2 x 4H2O, together with NaN3 and K2C2O4, respectively. The structures of these MOFs were established by single-crystal X-ray diffraction analysis. The crystal data for 1 were as follows: monoclinic, C2/c, a = 20.956(13) A, b = 9.884(6) A, c = 24.318(14) A, beta = 95.87(5) degrees, Z = 8. The crystal data for 2 were as follows: triclinic, P1, a = 12.400(9) A, b = 16.827(12) A, c = 17.196(11) A, alpha = 66.35(5), beta = 95.87(5) degrees, gamma = 71.03(6), Z = 2. Complex 1 is a novel noninterpenetrating three-dimensional (3D) framework, in which the azide ligand connects Mn(II) atoms in an end-to-end (EE) mode to give [Mn-N-N-N-]n infinite one-dimensional (1D) chains, and complex 2 has a two-dimensional (2D) network structure in which the Mn(II) ions are linked by the oxalate anions to form 1D [Mn(C2O4)]n chains. Each titmb in these two complexes connects three metal atoms and serves as a three-connecting ligand. The magnetic properties of 1 and 2 were investigated. The results showed that the antiferromagnetic interactions occurred between the Mn(II) ions linked by the azide ligands in complex 1, and those linked by the oxalate anions and the carboxylate in syn-anti coordination mode in complex 2. The entirely different structures of complexes 1 and 2, on one hand, indicate that the azide and the oxalate ligands affected the structures of MOFs greatly, and on the other hand, reveals the potential applications of MOFs with the azide and oxalate ligands, which are efficient magnetic couplers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号