首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inverse problem of the theory of the Laval nozzle is considered, which leads to the Cauchy problem for the gasdynamic equations; the streamlines and the flow parameters are found from the known velocity distribution on the axis of symmetry.The inverse problem of Laval nozzle theory was considered in 1908 by Meyer [1], who expanded the velocity potential into a series in powers of the Cartesian coordinates and constructed the subsonic and supersonic solutions in the vicinity of the center of the nozzle. Taylor [2] used a similar method to construct a flowfield which is subsonic but has local supersonic zones in the vicinity of the minimal section. Frankl [3] and Fal'kovich [4] studied the flow in the vicinity of the nozzle center in the hodograph plane. Their solution, just as the Meyer solution, made it possible to obtain an idea of the structure of the transonic flow in the vicinity of the center of the nozzle.A large number of studies on transonic flow in the vicinity of the center of the nozzle have been made using the method of small perturbations. The approximate equation for the transonic velocity potential in the physical plane, obtained in [3–6], has been studied in detail for the plane and axisymmetric cases. In [7] Ryzhov used this equation to study the question of the formation of shock waves in the vicinity of the center of the nozzle, and conditions were formulated for the plane and axisymmetric cases under which the flow will not contain shock waves. However, none of the solutions listed above for the inverse problem of Laval nozzle theory makes it possible to calculate the flow in the subsonic and transonic parts of the nozzles with large gradients of the gasdynamic parameters along the normal to the axis of symmetry.Among the studies devoted to the numerical calculation of the flow in the subsonic portion of the Laval nozzle we should note the study of Alikhashkin et al., and the work of Favorskii [9], in which the method of integral relations was used to solve the direct problem for the plane and axisymmetric cases.The present paper provides a numerical solution of the inverse problem of Laval nozzle theory. A stable difference scheme is presented which permits analysis with a high degree of accuracy of the subsonic, transonic, and supersonic flow regions. The result of the calculations is a series of nozzles with rectilinear and curvilinear transition surfaces in which the flow is significantly different from the one-dimensional flow. The flowfield in the subsonic and transonic portions of the nozzles is studied. Several asymptotic solutions are obtained and a comparison is made of these solutions with the numerical solution.The author wishes to thank G. D. Vladimirov for compiling the large number of programs and carrying out the calculations on the M-20 computer.  相似文献   

2.
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model.  相似文献   

3.
4.
5.
By extending the pseudo-Stroh formalism to two-dimensional decagonal quasicrystals, an exact closed-form solution for a simply supported and multilayered two-dimensional decagonal quasicrystal plate is derived in this paper. Based on the different relations between the periodic direction and the coordinate system of the plate, three internal structure cases for the two-dimensional quasicrystal layer are considered. The propagator matrix method is also introduced in order to treat efficiently and accurately the multilayered cases. The obtained exact closed-form solution has a concise and elegant expression. Two homogeneous quasicrystal plates and a sandwich plate made of a two-dimensional quasicrystal and a crystal with two stacking sequences are investigated using the derived solution. Numerical results show that the differences of the periodic direction have strong influences on the stress and displacement components in the phonon and phason fields; different coupling constants between the phonon and phason fields will also cause differences in physical quantities; the stacking sequences of the multilayer plates can substantially influence all physical quantities. The exact closed-form solution should be of interest to the design of the two-dimensional quasicrystal homogeneous and laminated plates. The numerical results can also be employed to verify the accuracy of the solution by numerical methods, such as the finite element and difference methods, when analyzing laminated composites made of quasicrystals.  相似文献   

6.
The velocity and temperature distributions in a viscous incompressible fluid flow in a two-dimensional diffuser are analyzed. Fully developed flow is considered, i.e., the influence of the entrant section is disregarded. It is assumed that the diffuser walls are maintained at a temperature depending on the polar radius. The dynamic viscosity is considered to be an exponential function of the temperature. The problem is reduced to the solution of a system of ordinary differential equations, which is solved by the method of successive approximations. The convergence of the iterative scheme is proved.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 40–48, July–August, 1973.The author is indebted to L.A. Galin and N. N. Gvozdkov for assistance with the study.  相似文献   

7.
8.
9.
10.
11.
Self-similar nonsteady flow in a Laval nozzle is considered; the flow is established when an ideal gas issues from a volume into a space at a sufficiently small pressure. The flow in the nozzle is assumed to be one-dimensional. Qualitative conclusions are formed on the effect of the nonsteady flow conditions on the distribution of M. For the case when the nonsteady properties have little effect, an asymptotic solution is obtained in quadratures and an example of a calculation is given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 71–76, March–April, 1978.  相似文献   

12.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow due to a porous disk rotating with a constant angular speed.The three-dimensional hydromagnetic equations of motion are treated analytically to obtained exact solutions with the inclusion of suction and injection.The well-known thinning/thickening flow field effect of the suction/injection is better understood from the constructed closed form velocity equations.Making use of this solution,analytical formulas for the angular velocity components as well as for the permeable wall shear stresses are derived.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation.The temperature field is shown to accord with the dissipation and the Joule heating.As a result,exact formulas are obtained for the temperature field which take different forms corresponding to the condition of suction or injection imposed on the wall.  相似文献   

13.
This paper considers nonlinear equations describing the propagation of long waves in two-dimensional shear flow of a heavy ideal incompressible fluid with a free boundary. A nine-dimensional group of transformations admitted by the equations of motion is found by symmetry methods. Two-dimensional subgroups are used to find simpler integrodifferential submodels which define classes of exact solutions, some of which are integrated. New steady-state and unsteady rotationally symmetric solutions with a nontrivial velocity distribution along the depth are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 41–54, September–October, 2008.  相似文献   

14.
The flow of a mixture of gas and condensed particles in an axisymmetric Laval nozzle is considered. The motion of the particles is calculated in a specified field of gas flow, with due allowance for their turbulent diffusion. The results of calculations indicating the necessity of allowing for this phenomenon when considering the motion of particles toward the wall of a profiled nozzle are presented.Translated from Izvestiya Akademii Nauk SSSR, No. 2, pp. 161–165, March–April, 1973.  相似文献   

15.
The formulation of a control-volume-based finite element method (CVFEM) for axisymmetric, two-dimensional, incompressible fluid flow and heat transfer in irregular-shaped domains is presented. The calculation domain is discretized into torus-shaped elements and control volumes. In a longitudinal cross-sectional plane, these elements are three-node triangles, and the control volumes are polygons obtained by joining the centroids of the three-node triangles to the mid-points of the sides. Two different interpolation schemes are proposed for the scalar-dependent variables in the advection terms: a flow-oriented upwind function, and a mass-weighted upwind function that guarantees that the discretized advection terms contribute positively to the coefficients in the discretized equations. In the discretization of diffusion transport terms, the dependent variables are interpolated linearly. An iterative sequential variable adjustment algorithm is used to solve the discretized equations for the velocity components, pressure and other scalar-dependent variables of interest. The capabilities of the proposed CVFEM are demonstrated by its application to four different example problems. The numerical solutions are compared with the results of independent numerical and experimental investigations. These comparisons are quite encouraging.  相似文献   

16.
A p-version least squares finite element formulation for non-linear problems is applied to the problem of steady, two-dimensional, incompressible fluid flow. The Navier-Stokes equations are cast as a set of first-order equations involving viscous stresses as auxiliary variables. Both the primary and auxiliary variables are interpolated using equal-order C0 continuity, p-version hierarchical approximation functions. The least squares functional (or error functional) is constructed using the system of coupled first-order non-linear partial differential equations without linearization, approximations or assumptions. The minimization of this least squares error functional results in finding a solution vector {δ} for which the partial derivative of the error functional (integrated sum of squares of the errors resulting from individual equations for the entire discretization) with respect to the nodal degrees of freedom {δ} becomes zero. This is accomplished by using Newton's method with a line search. Numerical examples are presented to demonstrate the convergence characteristics and accuracy of the method.  相似文献   

17.
Summary Similarity conditions are presented for the solution of some problems of heat transfer in incompressible two-dimensional boundary layer flow. The treatment holds for forced convection as well as for free convection. For free convection no a priori restriction is made with respect to geometry or temperature distribution of the solid surface. For forced convection the treatment is restricted to uniform bulk flow parallel to a flat surface of non-uniform temperature or heat flux. The results are summarized in some tables that facilitate comparison with older work.  相似文献   

18.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

19.
In this paper, an exact analytical solution for creeping flow of Bingham plastic fluid passing through curved rectangular ducts is presented for the first time. The closed form of axial velocity distribution, flow resistance ratio, and wall shear stress are derived using bounded Fourier transformation. An extensive investigation on mutual effects of Hedstrom number, curvature ratio, and aspect ratio is conducted. The results indicate that a drag reduction is caused in the flow field by increasing the Hedstrom number. It is shown that unlike the Newtonian creeping Dean flow, the critical aspect ratio (an aspect ratio in which the flow resistance ratio is independent from curvature ratio) does not exist at large enough Hedstrom numbers. Analytical solution also indicated that as Hedstrom number is increased, the value of Poiseuille number is enhanced, and unlike the Newtonian flows, the value of Poiseuille number is not zero at edges of cross section.  相似文献   

20.
The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung’s (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain–energy density function. The fluid is described through a Navier–Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号