首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation of an amyloid beta peptide (Abeta) into fibrils is a key pathological event in Alzheimer's disease (AD). Under certain conditions, Cu2+ markedly inhibits Abeta from aggregation and is considered as a potential factor in the normal brain preventing Abeta from aggregation. The possible mechanism of the inhibitory effect of Cu2+ was investigated for the first time by molecular dynamics (MD) simulations. On the basis of the radial distribution function analysis of the MD data, a novel strategy, the Q function, was proposed to explore the binding sites of Cu2+ by evaluating the coordination priority of atoms in Abeta, and the [6-5-5] tri-ring 4N binding mode of the Cu2+-Abeta complexes was found. The mechanism of the conformational transition of Abeta from the beta conformation to distorted beta conformations, which destabilizes the aggregation of Abeta into fibrils, was also revealed. All the results provide helpful clues for an improved understanding of the role of Cu2+ in the pathogenesis of AD and contribute to the development of an anti-amyloid therapeutic strategy.  相似文献   

2.
Two histidine-rich branched peptides with one lysine as a branching unit have been designed and synthesized by solid-phase peptide synthesis. Their complex formation with Cu(II) and Zn(II) as well as their ability to attenuate the metal-ion induced amyloid aggregation has been characterized. Both peptides can keep Cu(II) and Zn(II) in complexed forms at pH 7.4 and can bind two equivalents of metal ions in solutions with excess metal. The stoichiometry, stability and structure of the complexes formed have been determined by pH potentiometry, UV-Vis spectrophotometry, circular dichroism, EPR and NMR spectroscopy and ESI-MS. Both mono- and bimetallic species have been detected over the whole pH range studied. The basic binding mode is either a tridentate {N(amino), N(amide), N(im)} or a histamine-type of coordination which is complemented by the binding of far imidazole or amino groups leading to macrochelate formation. The peptides were able to prevent Cu(II)-induced Aβ(1-40) aggregation but could not effectively compete for Zn(II) in vitro. Our results suggest that branched peptides containing potential metal-binding sites may be suitable metal chelators for reducing the risk of amyloid plaque formation in Alzheimer's disease.  相似文献   

3.
Dysfunctional interactions of metal ions, especially Cu, Zn, and Fe, with the amyloid-beta (A beta) peptide are hypothesized to play an important role in the etiology of Alzheimer's disease (AD). In addition to direct effects on A beta aggregation, both Cu and Fe catalyze the generation of reactive oxygen species (ROS) in the brain further contributing to neurodegeneration. Disruption of these aberrant metal-peptide interactions via chelation therapy holds considerable promise as a therapeutic strategy to combat this presently incurable disease. To this end, we developed two multifunctional carbohydrate-containing compounds N,N'-bis[(5-beta-D-glucopyranosyloxy-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL1) and N,N'-bis[(5-beta-D-glucopyranosyloxy-3-tert-butyl-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL2) for brain-directed metal chelation and redistribution. Acidity constants were determined by potentiometry aided by UV-vis and 1H NMR measurements to identify the protonation sites of H2GL1,2. Intramolecular H bonding between the amine nitrogen atoms and the H atoms of the hydroxyl groups was determined to have an important stabilizing effect in solution for the H2GL1 and H2GL2 species. Both H2GL1 and H2GL2 were found to have significant antioxidant capacity on the basis of an in vitro antioxidant assay. The neutral metal complexes CuGL1, NiGL1, CuGL2, and NiGL2 were synthesized and fully characterized. A square-planar arrangement of the tetradentate ligand around CuGL2 and NiGL2 was determined by X-ray crystallography with the sugar moieties remaining pendant. The coordination properties of H2GL1,2 were also investigated by potentiometry, and as expected, both ligands displayed a higher affinity for Cu2+ over Zn2+ with H2GL1 displaying better coordinating ability at physiological pH. Both H2GL1 and H2GL2 were found to reduce Zn2+- and Cu2+- induced Abeta1-40 aggregation in vitro, further demonstrating the potential of these multifunctional agents as AD therapeutics.  相似文献   

4.
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.  相似文献   

5.
Alzheimer's disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides (amyloid-beta, Abeta) derived from the amyloid precursor protein. Here, we present the structure and the Zn2+ binding sites of human and rat Abeta(1-28) fragments in water/sodium dodecyl sulfate (SDS) micelles by using 1H NMR spectroscopy. The chemical shift variations measured after Zn2+ addition at T>310 K allowed us to assign the binding donor atoms in both rat and human zinc complexes. The Asp-1 amine, His-6 Ndelta, Glu-11 COO-, and His-13 Nepsilon of rat Abeta28 all enter the metal coordination sphere, while His-6 Ndelta, His-13, His-14 Nepsilon, Asp-1 amine, and/or Glu-11 COO- are all bound to Zn2+ in the case of human Abeta28. Finally, a comparison between the rat and human binding abilities was discussed.  相似文献   

6.
The copper(II) binding features of the APP(145-155) and APP(145-157) fragments of the amyloid precursor protein, Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-NH2 and Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-Glu-Thr-NH2 were studied by NMR spectroscopy and NMR findings were supported by UV-vis, CD and EPR spectra. Potentiometric measurements were performed only for the more soluble Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-Glu-Thr-NH2 peptide fragment. The following was shown: (i) the imidazole rings of all the three His residues are involved in metal coordination; (ii) metal binding induces ionisation of Leu-148 and His-149 amide nitrogens that complete the donor set to copper(II) in the species dominant at neutral pH; (iii) the unusual coordination scheme of the His-Xxx-His-Xxx-His consensus sequence justifies the high specificity for Cu(II) when compared to SOD-like or albumin-like peptides or even in amyloid Abeta fragments. The present findings may represent the key for interpreting the observed requirement of His residues conservation for the redox cycling between Cu(II) and Cu(I) by soluble APP.  相似文献   

7.
The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid beta-protein (Abeta) in senile plaques. On the other hand, levels of extracellular ("free") zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing Abeta aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting Abeta aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with Abeta 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of Abeta fibrils (more benign species) presumably by interfering with the self-assembly process of Abeta. These in vitro results strongly suggest a significant role for zinc pulses in Abeta pathology. We further propose that by interfering with Abeta self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign Abeta fibrils, and stabilize harmful non-fibrillar forms.  相似文献   

8.
The beta-amyloid (Abeta) deposition, which is the conversion of soluble Abeta peptides to insoluble plaques on a surface, is an essential pathological process in Alzheimer's disease (AD). The identification and characterization of possible environmental factors that may influence amyloid deposition in vivo are important to unveil the underlying etiology of AD. According to the amyloid cascade hypothesis, diffuse plaques are initial and visual deposits in the early event of AD, leading to amyloid plaques. To study amyloid deposition and growth in vitro, we prepared a synthetic template by immobilizing Abeta seeds on an N-hydroxysuccinimide ester-activated solid surface. According to our analysis with an ex situ atomic force microscope, the formation of amyloid plaque-like aggregates was mediated by the interaction between Abeta in a solution and on a synthetic template, suggesting that Abeta oligomers function well as seeds for amyloid deposition. It was observed that insoluble amyloid aggregates formed on the template surface serve as a sink of soluble Abeta in a solution as well as mediate the formation of intermediates in the pathway of amyloid fibrillization in a solution. Relative seeding efficiencies of fresh monomers, oligomers, and fully grown fibrils were analyzed by measuring the deposited plaque volume and its height distribution through atomic force microscopy. The result revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Fluorescence spectroscopy with thioflavin T confirmed that amyloid aggregate formation proceeds in a concentration-dependent manner. Analysis with Fourier transform infrared spectroscopy indicated a progressive transition of soluble Abeta42 monomer to amyloid fibrils having antiparallel beta-sheet structure on the template. Furthermore, studies on the interaction between Abeta40 and 42, two major variants of Abeta derived from the amyloid precursor protein, showed that amyloid aggregate formation on the surface was accelerated further by the homogeneous association of soluble Abeta42 onto Abeta42 seeds than by other combinations. A slightly acidic condition was found to be unfavorable for amyloid formation. This study gives insight into understanding the effects of environmental factors on amyloid formation via the use of a synthetic template system.  相似文献   

9.
We report mechanistic studies on the insertion reactions of [(NHC)Cu(μ‐H)]2 complexes with carbonyl substrates by UV‐vis and 1H NMR spectroscopic kinetic studies, H/D isotopic labelling, and X‐ray crystallography. The results of these comprehensive studies show that the insertion of Cu‐H with an aldehyde, ketone, activated ester/amide, and unactivated amide consist of two different rate limiting steps: the formation of Cu‐H monomer from Cu‐H dimer for more electrophilic substrates, and hydride transfer from a transient Cu‐H monomer for less electrophilic substrates. We also report spectroscopic and crystallographic characterization of rare Cu‐hemiacetalate and Cu‐hemiaminalate moieties from the insertion of an ester or amide into the Cu?H bond.  相似文献   

10.
The Abeta1-42 monomer structure was assessed with a 790 ns molecular dynamics (MD) simulation, and the results were compared with the NMR experiment on Abeta10-35 and Abeta1-40. Previous theoretical work in a model of the His13-His14 region of Abeta defined the possible Cu(II) binding geometries at this site (Raffa et al. J. Biol. Inorg. Chem. 2005, 10, 887-902). MD simulations totalling almost 2 micros were also carried out on Cu(II)/Abeta1-42 systems, using the ab initio structures as templates for the copper binding site. This work finds that the copper-free Abeta1-42 system may stabilize after approximately 350 ns into a collapsed coil conformation, and we find good agreement with some, but not all, of the structural features determined experimentally for the Abeta10-35 and Abeta1-40 peptides. The results of the Cu(II)/Abeta1-42 systems are compared to the Cu(II)-free Abeta1-42 simulation.  相似文献   

11.
The cytotoxicity of Alzheimer's disease has been linked to the self-assembly of the 4042 amino acid of the amyloid-beta (Abeta) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of Abeta(1-28) is alpha-helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of Abeta(1-28). In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible beta-strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little beta-strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.  相似文献   

12.
A photoinduced charge transfer (PCT)-based 1,3-alternate calix[4]crown fluoroionophore containing two cation recognition sites, a crown ether ring and two facing pyreneamide groups, is synthesized. Upon addition of K+, Pb2+, or Cu2+, wavelength changes are observed in both the fluorescence and absorption spectra, but with different binding modes. With K+, fluorescence emissions of the ligand scarcely change, while addition of Pb2+ or Cu2+ produces a remarkable change in both the excimer and monomer emissions. The observed data indicate that the metal cation is encapsulated in the crown-5 ring for K+ and by the two facing amide groups in the latter case, which is verified by a metal ion exchange experiment. The wavelength shifts in both fluorescence and absorption spectra upon addition of Cu2+ show that, in contrast to Pb2+, Cu2+ interacts with the nitrogen atoms of the amide groups, resulting in a PCT mechanism.  相似文献   

13.
A novel DTPA-tris(amide) derivative ligand, DTPA-N,N'-bis[bis(n-butyl)]-N'-methyl-tris(amide)(H2L3) was synthesized. With Gd3+, it forms a positively charged [Gd(L3)]+ complex, whereas with Cu2+ and Zn2+ [ML3], [MHL3]+ and [M2L3]2+ species are formed. The protonation constants of H2L3 and the stability constants of the complexes were determined by pH potentiometry. The stability constants are lower than those for DTPA-N,N'-bis[bis(n-butyl)amide)](H3L2), due to the lower negative charge and reduced basicity of the amine nitrogens in (L3)2-. The kinetic stability of [Gd(L3)]+ was characterised by the rates of metal exchange reactions with Eu3+, Cu2+ and Zn2+. The exchange reactions, which occur via proton and metal ion assisted dissociation of [Gd(L3)]+, are significantly slower than for [Gd(DTPA)]2-, since the amide groups cannot be protonated and interact only weakly with the attacking metal ions. The relaxivities of [Gd(L2)] and [Gd(L3)]+ are constant between 10-20 degrees C, indicating a relatively slow water exchange. Above 25 degrees C, the relaxivities decrease, similarly to other Gd3+ DTPA-bis(amide) complexes. The pH dependence of the relaxivities for [Gd(L3)]+ shows a minimum at pH approximately 9, thus differs from the behaviour of Gd3+-DTPA-bis(amides) which have constant relaxivities at pH 3-8 and an increase below and above. The water exchange rates for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, determined from a variable temperature (17)O NMR study, are lower than that for [Gd(DTPA)(H2O)]2-. This is a consequence of the lower negative charge and decreased steric crowding at the water binding site in amides as compared to carboxylate analogues. Substitution of the third acetate of DTPA5- with an amide, however, results in a less pronounced decrease in kex than substitution of the first two acetates. The activation volumes derived from a variable pressure (17)O NMR study prove a dissociative interchange and a limiting dissociative mechanism for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, respectively.  相似文献   

14.
The aggregation of amyloid beta-peptide [Abeta(1-40)] into fibril is a key pathological process associated with Alzheimer's disease. The effect of cationic gemini surfactant hexamethylene-1,6-bis-(dodecyldimethylammonium bromide) [C(12)H(25)(CH(3))(2)N(CH(2))(6)N(CH(3))(2)C(12)H(25)]Br(2) (designated as C(12)C(6)C(12)Br(2)) and single-chain cationic surfactant dodecyltrimethylammonium bromide (DTAB) on the Alzheimer amyloid beta-peptide Abeta(1-40) aggregation behavior was studied by microcalorimetry, circular dichroism (CD), and atomic force microscopy (AFM) measurements at pH 7.4. Without addition of surfactant, 0.5 g/L Abeta(1-40) mainly exists in dimeric state. It is found that the addition of the monomers of C(12)C(6)C(12)Br(2) and DTAB may cause the rapid aggregation of Abeta(1-40) and the fibrillar structures are observed by CD spectra and the AFM images. Due to the repulsive interaction among the head groups of surfactants and the formation of a small hydrophobic cluster of surfactant molecules, the fibrillar structure is disrupted again as the surfactant monomer concentration is increased, whereas globular species are observed in the presence of micellar solution. Different from single-chain surfactant, C(12)C(6)C(12)Br(2) has a much stronger interaction with Abeta(1-40) to generate larger endothermic energy at much lower surfactant concentration and has much stronger ability to induce the aggregation of Abeta(1-40).  相似文献   

15.
Extracellular deposition of amyloid‐beta (Aβ) protein, a fragment of membrane glycoprotein called β‐amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we have performed multiple all‐atom molecular dynamics simulations for physiological 42‐residue amyloid‐beta protein (Aβ42) in explicit water to characterize most plausible aggregation‐prone structure (APS) for the monomer and the very early conformational transitions for Aβ42 protein misfolding process in a lag phase. Monitoring the early sequential conformational transitions of Aβ42 misfolding in water, the APS for Aβ42 monomer is characterized by the observed correlation between the nonlocal backbone H‐bond formation and the hydrophobic side‐chain exposure. Characteristics on the nature of the APS of Aβ42 allow us to provide new insight into the higher aggregation propensity of Aβ42 over Aβ40, which is in agreement with the experiments. On the basis of the structural features of APS, we propose a plausible aggregation mechanism from APS of Aβ42 to form fibril. The structural and mechanistic observations based on these simulations agree with the recent NMR experiments and provide the driving force and structural origin for the Aβ42 aggregation process to cause AD. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

16.
The prion protein (PrP(C)) is a copper binding cell surface glycoprotein which when misfolded causes transmissible spongiform encephalopathies. The cooperative binding of Cu2+ to an unstructured octarepeat sequence within PrP(C) causes profound folding of this region. The use of NMR to determine the solution structure of the octarepeat region of PrP with Cu2+ bound has been hampered by the paramagnetic nature of the Cu2+ ions. Using NMR we have investigated the binding of candidate diamagnetic replacement ions, to the octarepeat region of PrP. We show that Pd2+ forms diamagnetic complexes with the peptides HGGG, HGGGW and QPHGGGWGQ with 1:1 stoichiometry. The 1H NMR spectra indicate that these peptides are in slow-exchange between free and bound Pd2+ on the chemical-shift time-scale. We demonstrate that the Pd-peptide complex forms slowly with a time taken to reach half-maximal signal of 3 hours. Other candidate metal ions, Ni2+, Pt2+ and Au3+, were investigated but only the Pd2+ complexes gave resolvable 1H NMR spectra. We have determined the solution structure of the QPHGGGWGQ-Pd 1:1 complex using 71 NOE distance restraints. A backbone RMSD of 0.30 A was observed over residues 3 to 7 in the final ensemble. The co-ordinating ligands consist of the histidine imidazole side chain N epsilon, the amide N of the second and third glycines with possibly H2O as the fourth ligand. The co-ordination geometry differs markedly from that of the HGGGW-Cu crystal structure. This survey of potential replacement metal ions to Cu2+ provides insight into the metal specificity and co-ordination chemistry of the metal bound octarepeats.  相似文献   

17.
The aggregation process of beta-amyloid peptide Abeta into amyloid is strongly associated with the pathology of Alzheimer's disease (AD). Aggregation may involve a transition of an alpha helix in Abeta(1-28) into beta sheets and interactions between residues 18-20 of the "Abeta amyloid core." We applied an i, i+4 cyclic conformational constraint to the Abeta amyloid core and devised side chain-to-side chain lactam-bridged cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28). In contrast to Abeta(1-28) and [Lys(17), Asp(21)]Abeta(1-28), cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was not able to form beta sheets and cytotoxic amyloid aggregates. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was able to interact with Abeta(1-28) and to inhibit amyloid formation and cytotoxicity. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) also interacted with Abeta(1-40) and interfered with its amyloidogenesis. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) or similarly constrained Abeta sequences may find therapeutic and diagnostic applications in AD.  相似文献   

18.
The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn(2+)-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn(2+)-bound Aβ((1-40)) and Aβ((1-42)) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn(2+)-bound Aβ. Additional interactions with residues surrounding Zn(2+) could possibly disrupt interactions between Zn(2+) and Aβ, which then facilitate these small molecules to chelate Zn(2+). The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.  相似文献   

19.
Beta amyloid peptide (Abeta) is the major proteinaceous component of senile plaques formed in Alzheimer's disease (AD) brain. The aggregation of Abeta is associated with neurodegeneration, loss of cognitive ability, and premature death. It has been suggested that oxidative stress and generation of free radical species have implications in the fibrillation of Abeta and its subsequent neurotoxicity. For this reason, it is proposed that antioxidants may offer a protective or therapeutic alternative against amyloidosis. This study is the first report of the formation of the noncovalent complex between Abeta or its oxidized form and the natural derived antioxidant oleuropein (OE) by electrospray ionization mass spectrometry (ESI MS). ESI MS allowed the real time monitoring of the complex formation between Abeta, OE, and variants thereof. Several experimental conditions, such as elevated orifice potential, low pH values, presence of organic modifier, and ligand concentration were examined, to assess the specificity and the stability of the formed noncovalent complexes.  相似文献   

20.
Abnormal accumulation and aggregation of amyloid-beta-peptide (Abeta) eventually lead to the formation and cerebral deposition of amyloid plaques, the major pathological hallmark in Alzheimer's disease (AD). Oleuropein (OE), an Olea europaea L. derived polyphenol, exhibits a broad range of pharmacological properties, such as antioxidant, anti-inflammatory, and antiatherogenic, which could serve as combative mechanisms against several reported pathways involved in the pathophysiology of AD. The reported noncovalent interaction between Abeta and OE could imply a potential antiamyloidogenic role of the latter on the former via stabilization of its structure and prevention of the adaptation of a toxic beta-sheet conformation. The established beta-sheet conformation of the Abeta hydrophobic carboxy-terminal region and the dependence of its toxicity and aggregational propensity on its secondary structure make the determination of the binding site between Abeta and OE highly important for assessing the role of the interaction. In this study, two different proteolytic digestion protocols, in conjunction with high-sensitivity electrospray ionization mass spectrometric analysis of the resulting peptide fragments, were used to determine the noncovalent binding site of OE on Abeta and revealed the critical regions for the interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号