首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic behavior of surface dimers on Ge(001) has been studied by positioning the tip of a scanning tunneling microscope over single flip-flopping dimers and measuring the tunneling current as a function of time. We observe that not just symmetric, but also asymmetric appearing dimers exhibit flip-flop motion. The dynamics of flip-flopping dimers can be used to sensitively gauge the local potential landscape of the surface. Through a spatial and time-resolved measurement of the flip-flop frequency of the dimers, local strain fields near surface defects can be accurately probed.  相似文献   

2.
Phase manipulation between c(4x2) and p(2x2) on the Si(100) surface has been demonstrated at 4.2 K for the first time using a low-temperature scanning tunneling microscope. We have discovered that it is possible to change the c(4x2) surface into the p(2x2) surface, artificially, through a flip-flop motion of the buckling dimers by using a sample bias voltage control. Also, scanning at a negative bias voltage or applying a pulse voltage can restore the c(4x2) surface. The STM images as a function of bias voltage and tunneling current reveal the interesting dynamics of the buckling dimers on the long debated surface. Our results will show that energetic tunneling electrons are most likely responsible for the observed phase transition from c(4x2) to p(2x2).  相似文献   

3.
A combined low-temperature scanning tunneling microscopy and density functional theory study on the binding and diffusion of copper monomers, dimers, and trimers adsorbed on Cu(111) is presented. Whereas atoms in trimers are found in fcc sites only, monomers as well as atoms in dimers can occupy the fcc as well as the metastable hcp site. In fact the dimer fcc-hcp configuration is only 1.3 meV less favorable with respect to the fcc-fcc configuration. This enables a confined intracell dimer motion, which at temperatures below 5 K is dominated by thermally assisted tunneling.  相似文献   

4.
We observe multiply frustrated tunneling ionization-induced dissociation of the argon dimers by intense linearly polarized ultrashort laser pulses. By measuring the kinetic energy release and angular distribution of the Coulomb explosion of up to eightfold ionized argon dimers, we can trace the recapture of up to two electrons to Rydberg states of the highly charged compound at the end of the laser pulse. Upon dissociation of the dimer, the Rydberg electron prefers to localize at the atomic ion with the higher charge state. We probe the electron recapture dynamics by a time-delayed weak pulse.  相似文献   

5.
We have investigated the formation and motion of copper adatoms and addimers on Ag(111) between 6 and 25 K with low-temperature scanning tunneling microscopy. The presence of atoms and dimers alters the motion of atoms and dimers via the long-range interaction mediated by the electrons in the two-dimensional surface state band. Above 16 K, dimers show quantum rotor behavior with altered rotational behavior in the presence of an additional adatom. The most favorable diffusional motion of the dimer is identified in combination with molecular dynamics calculations to be a zigzag out-of-cell motion starting above 24 K.  相似文献   

6.
Based on scanning tunneling microscopy and first-principles theoretical studies, we characterize the precise atomic structure of a topological soliton in In chains grown on Si(111) surfaces. Variable-temperature measurements of the soliton population allow us to determine the soliton formation energy to be ~60 meV, smaller than one-half of the band gap of ~200 meV. Once created, these solitons have very low mobility, even though the activation energy is only about 20 meV; the sluggish nature is attributed to the exceptionally low attempt frequency for soliton migration. We further demonstrate local electric field-enhanced soliton dynamics.  相似文献   

7.
The stoichiometric GaAs(114) surface has been prepared using molecular beam epitaxy followed by annealing in ultrahigh vacuum. Based on in situ scanning tunneling microscopy measurements and first-principles electronic-structure calculations, we determine the surface reconstruction which we call alpha2(2x1). Contrary to what is expected for a high-index surface, it is surprisingly elementary. The (2x1) unit cell contains two As dimers and two rebonded Ga atoms. The surface energy is calculated as 53 meV/?(2), which falls well within the range of low-index GaAs surface energies.  相似文献   

8.
The diffusion and interactions of CO molecules on Pd(111) were studied by scanning tunneling microscopy. By following the random walk motion of individual molecules as a function of temperature, an activation energy barrier for diffusion of 118 +/- 5 meV was determined. The interaction between CO molecules was found to be repulsive for pairs separated by one or two Pd(111) lattice distances, and weakly attractive at a separation of sqrt[3].  相似文献   

9.
The importance of substrate-mediated adsorbate-adsorbate interactions on electronic states has been demonstrated for Au dimers on NiAl(110) with a scanning tunneling microscope and density functional calculations. An unoccupied resonance observed in single Au atoms splits into a doublet in Au dimers. The energy splitting depends inversely on the distance between the two adatoms, revealing the relative importance of direct and substrate-mediated interactions. Spatially resolved conductance measurements of Au dimers reveal the symmetric and antisymmetric characters of the doublet states.  相似文献   

10.
The coverage dependent dynamics of CO on a Cu(111) surface are studied on an atomic scale using helium spin-echo spectroscopy. CO molecules occupy top sites preferentially, but also visit intermediate bridge sites in their motion along the reaction coordinate. We observe an increase in hopping rate as the CO coverage grows; however, the motion remains uncorrelated up to at least 0.10 monolayers (ML). From the temperature dependence of the diffusion rate, we find an effective barrier of 98 ± 5 meV for diffusion. Thermal motion is modelled with Langevin molecular dynamics, using a potential energy surface having adsorption sites at top and bridge positions and the experimental data are well represented by an adiabatic barrier for hopping of 123 meV. The sites are not degenerate and the rate changes observed with coverage are modelled successfully by changing the shape of the adiabatic potential energy surface in the region of the transition state without modifying the energy barrier. The results demonstrate that sufficient detail exists in the experimental data to provide information on the principal adsorption sites as well as the energy landscape in the region of the transition state.  相似文献   

11.
We present an analysis based on molecular dynamics simulations of water single particle and collective density fluctuations in a protein crystal at 150 and 300 K. For the collective dynamics, the calculations predict the existence of two sound modes. The first one around 35 meV is highly dispersive and the second one around 9 meV is weakly dispersive in the k range studied here (0.5相似文献   

12.
Surface motion of a topological defect between p(2×2) and c(4×2) structures, a “kink”, across buckled Sn-Ge and Si-Ge dimers on Ge(0 0 1) surfaces was investigated using scanning tunneling microscopy. Energy thresholds of π electrons for flipping these dimers in the kink are obtained by analyzing the kink surface motion. Electronic states of these systems and energy barriers for flipping the dimers are examined by first-principles calculations for considering elementary processes of the electronically-excited flip motion of the dimers. We propose that the flip motion is caused by a resonant scattering of the π electrons with localized electronic states at the kink.  相似文献   

13.
We investigate the convergence properties of the cluster expansion of equal-time Green functions in scalar theories with quartic self-coupling in (0 + 1), (1 + 1), and (2 + 1) space-time dimensions. The computations are carried out within the equal-time correlation dynamics approach, which consists in a closed set of coupled equations of motion for connected Green functions as obtained by a truncation of the BBGKY hierarchy. We find that the cluster expansion shows good convergence as long as the system is in a localized state (single phase configuration) and that it breaks down in a non-localized state (two phase configuration), as one would naively expect. Furthermore, in the case of dynamical calculations with a time dependent Hamiltonian for the evaluation of the effective potential we find two timescales determining the adiabaticity of the propagation; these are the time required for adiabaticity in the single phase region and the time required for tunneling into the non-localized lowest energy state in the two phase region. Our calculations show a good convergence for the effective potentials in (1 + 1) and (2+1) space-time dimensions since tunneling is suppressed in higher space-time dimensions.  相似文献   

14.
We performed inelastic neutron scattering on the 2D Shastry-Sutherland system SrCu2(11BO3)2 with an exact dimer ground state. Three energy levels at around 3, 5, and 9 meV were observed at 1.7 K. The lowest excitation at 3.0 meV is almost dispersionless with a bandwidth of 0.2 meV at most, showing a significant constraint on a single-triplet hopping owing to the orthogonality of the neighboring dimers. In contrast, the correlated two-triplet excitations at 5 meV exhibit a more dispersive behavior.  相似文献   

15.
The diffusion of Ge dimers on the Ge(001) surface has been studied with scanning tunneling microscopy. We have identified three different diffusion pathways for the dimers: diffusion of on-top dimers over the substrate rows, diffusion across the substrate rows, and diffusion of dimers in the trough. We report on a heretofore unknown phenomenon, namely, diffusion driven concerted motion of substrate atoms. This concerted motion is a direct consequence of the rearrangement of substrate atoms in the proximity of the trough dimer adsorption site.  相似文献   

16.
The longitudinal relaxation rate of the first stable alanine radical, SAR1, was studied by employing pulse EPR technique over a wide temperature interval (5-290 K). The complex nonexponential recovery of the longitudinal magnetization in this temperature interval has been described with two characteristic relaxation times, 1/T*(1a) as the faster component and 1/T*(1b) as the slower component, respectively. It was shown that 1/T*(1a) is strongly affected by the CH(3) group dynamics of the SAR1 center. The complete temperature dependence of 1/T*(1a) was described by invoking several relaxation mechanisms that involve hindered motion of the CH(3) group from classical rotational motion to coherent rotational tunneling. It was shown that all relevant relaxation mechanisms are determined by a single correlation time with the potential barrier (Delta E/k=1570 K). On the other hand the temperature dependence of 1/T*(1b) is related to the motional dynamics of the neighborly NH(3) and CH(3) groups. We found a larger average potential barrier for this motion (Delta E/k=2150 K) corresponding to smaller tunneling frequencies of the neighbor groups.  相似文献   

17.
Scanning tunneling microscopy (STM) at liquid helium temperature is used to image potassium adsorbed on graphite at low coverage (≈0.02 monolayer). Single atoms appear as protrusions on STM topographs. A statistical analysis of the position of the atoms demonstrates repulsion between adsorbates, which is quantified by comparison with molecular dynamics simulations. This gives access to the dipole moment of a single adsorbate, found to be 10.5±1 D. Time-lapse imaging shows that long-range order is broken by thermally activated diffusion, with a 30 meV barrier to hopping between graphite lattice sites.  相似文献   

18.
Quantum-dot cellular automata (QCA) is one of the emergent nano-technologies and a potential substitute for transistor based technologies. In this research, an efficient QCA based T, SR and JK flip-flops have been proposed. The proposed gates are implemented with multiplexer, three-input Majority gate and XOR gate. The circuit layouts are designed and verified using QCADesigner version 2.0.3. The simulation result reviles the excellence of the proposed design. The proposed T flip-flop archives 35% improvement in terms cell count. Similarly, the reported RS and JK flip-flop requires 43% and 50% less area respectively in comparison to the previous best single layer design. In addition, QCAPro tool has been used to estimate the power dissipation of all considered designs at different tunneling energy level.  相似文献   

19.
We report on a study of the motional characteristics of positively charged muonium defect centers in ZnO as an analog for H+ behavior. Muon spin depolarization measurements at zero applied magnetic field were completed from 20 K to 400 K, with preliminary results to 750 K. Results at the lower temperatures imply that Mu+ occupied two sites, and indicate local motion as thermally assisted tunneling with a characteristic energy of ∼60 meV, as well as a site change transition above 200 K with barrier energy ∼440 meV. Based on theoretical results, we have tentatively assigned these features to tunneling among three equivalent oxygen anti-bonding sites (AB) and a transition to a lower-energy bond-centered site (BC) oriented along the c-axis. Preliminary fits suggest that global diffusion of muonium occurs above 400 K, with a diffusion barrier energy of ∼0.7 eV.  相似文献   

20.
We investigate the atomistic details of a single atom-extraction process realized by using the scanning tunneling microscope tip-cluster interaction on a Ag(111) surface at 6 K. Single atoms are extracted from a silver cluster one atom at a time using small tunneling biases less than 35 mV. Combined total energy calculations and molecular dynamics simulations show a lowering of the atom-extraction barrier upon approaching the tip to the cluster. Thus, a mere tuning of the proximity between the tip and the cluster governs the extraction process. The atomic precision and reproducibility of this procedure are demonstrated by repeatedly extracting single atoms from a silver cluster on an atom-by-atom basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号