首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

2.
Explicit expressions are derived for the error terms associated with the asymptotic expansions of the convolution integral I(λ) = ∝0 ?(t) h(λt) dt, where h(t) and ?(t) are algebraically dominated at both 0+ and + ∞. Examples included are Fourier, Bessel, generalized Stieltjes, Hilbert and “potential” transforms.  相似文献   

3.
In this paper the integrals fmv(τ) = ∝0exp[?(t + τ)]tv(ln t)m(t + τ)?1 dt andgmv(τ) = ∝0exp[? ¦ ? τ ¦]tv(ln t)m(t ? τ)?1 dt are investigated for positive real values of the variable τ. Here, m is a nonnegative integer, v is a complex variable with Re(v) > ?1. Both integrals are related to the complex integral Φ(z) = ∝0exp[?(t ? z)]t?γ(ln t)m(t ? z)?1dt with 0 ? Re(γ) < 1, the behavior of which is analyzed in detail. The results are applied to obtain asymptotic representations for fmn(τ) and gmn(τ), m and n both nonnegative integers, near τ = 0. The latter integrals play a role in the study of the equations of neutron transport and radiative transfer.  相似文献   

4.
Consider the renewal equation in the form (1) u(t) = g(t) + ∝ot u(t ? τ) ?(τ) dτ, where ?(t) is a probability density on [0, ∞) and limt → ∞g(t) = g0. Asymptotic solutions of (1) are given in the case when f(t) has no expectation, i.e., 0 t?(t)dt = ∞. These results complement the classical theorem of Feller under the assumption that f(t) possesses finite expectation.  相似文献   

5.
6.
Let H be a self-adjoint operator on a complex Hilbert space H. The solution of the abstract Schrödinger equation idudt = Hu is given by u(t) = exp(?itH)u(0). The energy E = ∥u(t)∥2 is independent of t. When does the energy break up into different kinds of energy E = ∑j = 1NEj(t) which become asymptotically equipartitioned ? (That is, Ej(t) → ENas t → ± ∞ for all j and all data u(0).) The “classical” case is the abstract wave equation d2vdt2 + A2v = 0 with A self-adjoint on H1. This becomes a Schrödinger equation in a Hilbert space H (essentially H is two copies of H1), and there are two kinds of associated energy, viz., kinetic and potential. Two kinds of results are obtained. (1) Equipartition of energy is related to the C1-algebra approach to quantum field theory and statistical mechanics. (2) Let A1,…, AN be commuting self-adjoint operators with N = 2 or 4. Then the equation Πj = 1N (ddt ? iAj) u(t) = 0 admits equipartition of energy if and only if exp(it(Aj ? Ak)) → 0 in the weak operator topology as t → ± ∞ for jk.  相似文献   

7.
A theory of scattering for the time dependent evolution equations dudt = iHj(t)u, j = 0, 1 (1) is developed. The wave operators are defined in terms of the evolution operators Uj(t, s), which govern (1). The scattering operator remains unitary. Sufficient conditions for existence and completeness of the wave operators are obtained; these are the main results. General properties, such as the chain rule and various intertwining relations, are also established. Applications include potential scattering (H0(t) = ?Δ, Δ denoting the Laplacian, and H1(t) = ?Δ + q(t, ·)) and scattering for second-order differential operators with coefficients constant in the spatial variable (Hj(t) = ∑m, k = 1n amk(j)(t)(?2?xm ?xk) + bj(t) for j = 0, 1).  相似文献   

8.
For the functional equation Lny(t) + H(t,y(g(t)) = f(t), n ? 2, where Ln = 1pn(t)ddt1Pn ? 1(t)ddtddt1P1(t)ddt·P0(t) sufficient conditions have been found to ensure that a solution is either quickly oscillating or else it is nonoscillatory. Both canonical and noncanonical forms of Ln have been studied.  相似文献   

9.
The operator L?(t, λ) = e?iλ(t, λ) ? 2e?iλtT?(s, x) e(s, t) dvs(x) dm(s) acting on H=∝02πL2(vt), where m and vt, 0 ? t ? 2π are measures on [0, 2π] with m smooth and e(s, t) = exp[?∝tsTdvλ(θ) dm(λ)], satisfies rank(I ? LL1) = rank(I ? L1L) = 1. It is, therefore, unitarily equivalent to a scalar Sz.-Nagy-Foia? canonical model. The purpose of this paper is to determine the model explicitly and to give a formula for the unitary equivalence.  相似文献   

10.
Existence and boundedness theorems are given for solutions of nonlinear integrodifferential equations of type ddtu(t) + Bu(t) + ∝0t a(t, s) Au(s) ds ? f(t) (t > 0), (1.1) u(0) = u0, Here A and B are nonlinear, possibly multivalued, operators on a Banach space W and a Hilbert space H, where W ? H. The function f (0, ∞) → H and the kernel a(t, s): R × RR are known functions. The results of this paper extend the results of Crandall, Londen, and Nohel [4] for equation (1.1). They assumed the kernel to be of the type a(t, s) = a(t ? s). We relax this assumption and obtain similar results. Examples of kernels satisfying the conditions we require are given in section 4.  相似文献   

11.
Let Lu be the integral operator defined by (Lk?)(x, y) = ∝ s ∝ ?(x′, y′)(eik??) dx′ dy′, (x, y) ? S where S is the interior of a smooth, closed Jordan curve in the plane, k is a complex number with Re k ? 0, Im k ? 0, and ?2 = (x ?x′)2 + (y ? y′)2. We define q(x, y) = [dist((x, y), ?S)]12, (x, y) ? S; L2(q, S) = {? : ∝ s ∝ ¦ ?(x, y)¦2 q(x, y) dx dy < ∞}; W21(q, S) = {? : ? ? L2(q, S), ???x, ?f?y ? L2(q, S)}, where in the definition of W21(q, S) the derivatives are taken in the sense of distributions. We prove that Lk is a continuous 1-l mapping of L2(q, S) onto W21(q, S).  相似文献   

12.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

13.
We consider functionals of the form: If(u) = ∝Tf[t, u(t)]μ(dt), which are defined on spaces Lp(T, Rk), and we study for these functionals the properties of a convergence for which the conjugacy If → If1 is a continuous operator.  相似文献   

14.
Asymptotic expansion as x → +∞ is obtained for the infinite Fourier integral F(x) = ∝0 ?(t) eixt dt, in which ?(t) has a logarithmic singularity of the type tα?1(?ln t)β at the origin. Here, Re α > 0 and β is an arbitrary complex number.  相似文献   

15.
We shall examine the control problem consisting of the system dxdt = f1(x, z, u, t, ?)?(dzdt) = f2(x, z, u, t, ?) on the interval 0 ? t ? 1 with the initial values x(0, ?) and z(0, ?) prescribed, where the cost functional J(?) = π(x(1, ?), z(1, ?), ?) + ∝01V(x(t, ?), z(t, ?), u(t, ?), t, ?) dt is to be minimized. We shall restrict attention to the special problem where the fi's are linear in z and u, V is quadratic in z and independent of z when ? = 0, π and V are positive semidefinite functions of x and z, and V is a positive definite function of u. Under appropriate conditions, we shall obtain an asymptotic solution of the problem valid as the small parameter ? tends to zero. The techniques of constructing such asymptotic expansions will be stressed.  相似文献   

16.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

17.
On a modified space Φ′ from the space J′ of tempered distributions, it is proven that a stochastic equation, X(t) = γ + W(t) + ∝0t L1(s) X(s) ds, has a unique solution, where W(t) is a Φ′-valued Brownian motion independent of a Φ′-valued Gaussian random variable γ and L1(s) is an integro-differential operator. As an application, a fluctuaton result (or central limit theorem) is shown for interacting diffusions.  相似文献   

18.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

19.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

20.
We derive sufficient conditions for ∝ λ (dx)6Pn(x, ·) - π6 to be of order o(ψ(n)-1), where Pn (x, A) are the transition probabilities of an aperiodic Harris recurrent Markov chain, π is the invariant probability measure, λ an initial distribution and ψ belongs to a suitable class of non-decreasing sequences. The basic condition involved is the ergodicity of order ψ, which in a countable state space is equivalent to Σ ψ(n)Pii?n} <∞ for some i, where τi is the hitting time of the tate i. We also show that for a general Markov chain to be ergodic of order ψ it suffices that a corresponding condition is satisfied by a small set.We apply these results to non-singular renewal measures on R providing a probabilisite method to estimate the right tail of the renewal measure when the increment distribution F satisfies ∝ tF(dt) 0; > 0 and ∝ ψ(t)(1- F(t))dt< ∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号