首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vapor pressures and apparent molal volumes of solutions of ZnCl2 in ethanol are reported at 298.15 K. The vapor pressure of ethanol has been evaluated from the osmotic coefficients measured by an improved isopiestic method. The experimental osmotic coefficients have been correlated with the Pitzer model and local composition models including electrolyte non-random two liquid (e-NRTL), non-random factor (NRF), modified NRTL (MNRTL) and extended Wilson (EW) models. Apparent molal volumes have been calculated from the densities of the solutions measured by a vibrating-tube densimeter, and fitted with the volumetric equations based on the Pitzer model and the local composition models. All of the models successfully correlate the experimental osmotic coefficients and apparent molal volume data.  相似文献   

2.
The osmotic coefficients of 1,2-butanediol (12BD), 1,3-butanediol (13BD), 1,4-butanediol (14BD), 2,3-butanediol (23BD), 1,2,4-butanetriol (124BT) and 1,2,3,4-butanetetrol (1234BT) in water were measured by the isopiestic method at 298.15 K. Experimental osmotic coefficients were used to calculate water activity, solute activity coefficients and the pairwise Gibbs energy coefficients for solute–solute interactions.  相似文献   

3.
The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol−1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of TB = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of TB = (549.1 ± 0.1) K is also estimated by extrapolation.  相似文献   

4.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

5.
Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol · kg−1. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg–Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

6.
Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride), HmimCl (1-hexyl-3-methylimidazolium chloride), MmimMeSO4 (1,3-dimethylimidazolium methylsulfate), and BmimMeSO4 (1-butyl-3-methylimidazolium methylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity data of all the studied binary systems are obtained from experimental data. The osmotic coefficients data are correlated using the extended Pitzer model of Archer and the modified NRTL (MNRTL) model and standard deviations obtained with both models are given too. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

7.
Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality)0.5, with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.  相似文献   

8.
Water activities of aqueous electrolyte solutions of HCl(aq), LiCl(aq), NaCl(aq), KCl(aq), CsCl(aq), NH4Cl(aq), MgCl2(aq), CaCl2(aq), and BaCl2(aq) have been determined at T =  298.15 K by the hygrometric method, and at molalities ranging from 0.2 mol · kg  1to saturation. From measurements of droplets diameters of reference NaCl(aq) or LiCl(aq), the dependence of relative humidity on solute concentration was determined. The data on the relative humidities allow the deduction of water activities and the osmotic coefficients at different molalities. Osmotic coefficient data have been described by the ion interaction model of Pitzer. The ion interaction parameters were also determined for each of the studied salts. With these parameters, the solute activity coefficients can be predicted. Our present results have been compared with reported thermodynamic data.  相似文献   

9.
Vaporization enthalpies for methyl myristoleate (methyl Z 9-tetradecenonate), methyl 10-pentadecenoate, methyl palmitoleate (methyl Z 9-hexadecenoate), methyl Z 10-heptadecenoate, methyl oleate (methyl Z 9-octadecenoate), methyl linoleate (methyl Z,Z 9,12-octadecadienoate), methyl linolenate (methyl Z,Z,Z 9,12,15-octadecatrienoate), methyl Z 11-eicosenoate, methyl Z,Z 11,14-eicosadienoate, methyl Z,Z,Z 11,14,17-eicosatrieneoate, methyl arachidonate (methyl Z,Z,Z,Z 5,8,11,14-eicosatetraeneoate), methyl Z,Z,Z,Z,Z 5,8,11,14,17-eicosapentaeneoate, methyl erucate (methyl Z 13-docosaneoate), methyl Z,Z 13,16-docosadienoate, methyl Z,Z,Z,Z,Z,Z 4,7,10,13,16,19-docosahexaenoate and methyl nervonate (methyl Z 15-tetracosenoate) are evaluated at T = 298.15 and vapor pressures are evaluated over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an interpolative process using literature values for the saturated fatty acid methyl esters (FAMEs) from methyl decanoate to methyl tetracosanoate, exclusive of methyl nonadecanoate, heneicosanoate and tricosanoate, as standards. Relationships for calculating vapor pressures for all of the compounds studied from T = 298.15 to 450 K are provided.  相似文献   

10.
The purpose of this study is to present a model for the prediction of water activity in multicomponent aqueous solutions containing a common ion from available binary data. The hygrometric method has been used to measure relative humidities for the aqueous electrolyte mixture (NaCl  +  KCl)(aq) at total molalities ranging from 0.2 mol · kg  1to saturation for different molal ratiosr of NaCl(aq) to KCl(aq) with r =  (0.2, 0.5, 1, 2, 3, and 4) at T =  298.15 K. The data obtained have been used to determine water activities and osmotic coefficients. The results show that the values of water activities and osmotic coefficients calculated with the proposed model are close to the experimental ones. This model is also compared with four other models (RS, Pitzer, RWR, and LS II) over the range of the studied total molalities. From the measurements, the activity coefficients of NaCl(aq) and KCl(aq) in the mixture have also been determined.  相似文献   

11.
Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.  相似文献   

12.
Activity coefficients of CaCl2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl2 ranged from about 0.01 mol · kg?1 to 0.20 mol · kg?1, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye–Hückel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (gES) and salting constants (kS) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.  相似文献   

13.
The mixed aqueous electrolyte system of ammonium and sodium chlorides has been studied by the hygrometric method at the temperature 298.15 K. The relative humidities of this system were measured at total molalities from 0.3mol · kg  1 to 6 mol · kg  1for different ionic-strength fractions of NH 4Cl with y =  (0.33, 0.50, and 0.67). The data obtained allow the deduction of new water activities and osmotic coefficients. The experimental results are compared with the predictions of the extended composed additivity model proposed in our previous work, the Robinson–Stokes, Reilly–Wood–Robinson, and Lietzke–Stoughton models. From these measurements, the new Pitzer mixing ionic parameters were determined and used to predict the solute activity coefficients in the mixture.  相似文献   

14.
The water activities of aqueous electrolyte mixture (NaCl + KCl + LiCl + H2O) were experimentally determined at T = 298.15 K by the hygrometric method at total ionic-strength from 0.4 mol · kg−1 to 6 mol · kg−1 for different ionic-strength fractions y of NaCl with y = 1/3, 1/2, and 2/3. The data allow the deduction of new osmotic coefficients. The results obtained were correlated by Pitzer’s model and Dinane’s mixing rules ECA I and ECA II for calculations of the water activity in mixed aqueous electrolytes. A new Dinane–Pitzer model is proposed for the calculation of osmotic coefficients in quaternary aqueous mixtures using the newly ternary and quaternary ionic mixing parameters of this studied system. The solute activity coefficients of component in the mixture are also determined for different ionic-strength fractions y of NaCl.  相似文献   

15.
Water activity measurements by the isopiestic method have been carried out on the aqueous ternary system of {l-serine + 1-(2-carboxyethyl)-3-methylimidazolium chloride[HOOCEMIM][Cl]} ionic liquid and the aqueous binary system of IL at T = 298.15 K and atmospheric pressure. The data obtained were used to calculate the vapor pressure and osmotic coefficient of solution as a function of concentration. The experimental results for the activity of water were accurately correlated with segment-based local composition models of modified NRTL and UNIQUAC. The fitting quality of the above models has been favorably compared with the NRTL and Wilson models. From these data, the corresponding activity coefficients have been calculated. For the same system, the solubility of the l-serine at various [HOOCEMIM][Cl] ionic liquid concentrations was measured at T = 298.15 K using the gravimetric method. A chemical model was employed to describe the dissociation equilibria of all amino acid species with hydrogen ions in water. Moreover, for l-serine, the chemical model indicated that the formation of cations is insignificant in the [HOOCEMIM][Cl] solution. Also the above local composition models were used to predict the solubility of l-serine in aqueous IL solutions. To provide information regarding (solute + solute) interactions, transfer Gibbs free energies (ΔGtr) of amino acid from water to aqueous IL solutions have been determined.  相似文献   

16.
Densities were measured for the liquid octane and 1-chlorohexane, and for nine of their mixtures at four temperatures between 298.15 K and 328.15 K and at pressures up to 40 MPa. An apparatus for density measurements of liquids and liquid mixtures whose main part is a high-pressure vibrating-tube densimeter working in a static mode was used for the measurement. The density data were fitted to the Tait equation and the isothermal compressibilities were calculated with the aid of this equation. Excess molar volumes were also computed from the densities and fitted to the Redlich–Kister equation.  相似文献   

17.
This work reports new experimental density data (954 points) for binary mixtures of 1-heptanol + heptane over the composition range (seven compositions; 0  1-heptanol mole fraction x  1), between 298.15 and 393.15 K, and for 23 pressures from 0.1 MPa up to 140 MPa. An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.7 kg · m−3 was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation, provided as supplementary material.  相似文献   

18.
19.
The current theory of programmed temperature gas chromatography considers that solutes are focused by the stationary phase at the column head completely and does not explicitly recognize the different effects of initial temperature (To) and heating rate (rT) on the retention time or temperature of a homologue series. In the present study, n‐alkanes, 1‐alkenes, 1‐alkyl alcohols, alkyl benzenes, and fatty acid methyl esters standards were used as model chemicals and were separated on two nonpolar columns, one moderately polar column and one polar column. Effects of To and rT on the retention of nonstationary phase focusing solutes can be explicitly described with isothermal and cubic equation models, respectively. When the solutes were in the stationary phase focusing status, the single‐retention behavior of solutes was observed. It is simple, dependent upon rT only and can be well described by the cubic equation model that was visualized through four sequential slope analyses. These observed dual‐ and single‐retention behaviors of solutes were validated by various experimental data, physical properties, and computational simulation.  相似文献   

20.
Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号