首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ten new Agricultural/Food Reference Materials (RMs) were characterized with respect to their elemental compositions via an interlaboratory characterization (certification) campaign. Chemical analyses were conducted in 73 cooperating laboratories applying 13 major classes of independently different analytical methods. A total of 213 best estimate values, and 65 informational values were obtained for Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W and Zn in the following RMs: Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438).  相似文献   

2.
Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Musele Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA.  相似文献   

3.
Summary Corn Bran (NIST RM 8433), Corn Starch (NIST RM 8432) and Microcrystalline Cellulose (NIST RM 8416) Reference Materials were characterized for essential and toxic major, minor and trace elemental composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods by analysts in cooperating laboratories yielded 10–29 best estimate and 1–16 informational concentration values for each of these materials. Two materials, Corn Starch and Microcrystalline Cellulose, contain particularly low levels of trace elements. These reference materials are intended for analytical quality control of elemental determinations in corn and plant products as well as other agricultural/food materials with related matrices.Contribution No. 92–146 from Centre for Land and Biological Resources Research  相似文献   

4.
Summary Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415) and Whole Milk Powder (NIST RM 8435) Reference Materials were characterized for essential and toxic major, minor and trace element composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods yielded best estimate concentration values for 27, 23 and 21 elements, and informational concentration values for 5, 4 and 9 elements, respectively, in RM's 8414, 8415 and 8435. These Reference Materials are intended for analytical quality control of element determinations on meat, egg and milk-based products as well as agricultural/food materials with related matrices.Contribution no. 92–147 from Centre for Land and Biological Resources Research  相似文献   

5.
A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of the AOAC triangle. Five of these materials have values assigned for total dietary fiber-the first such information provided for materials available from NIST.  相似文献   

6.
An analytical procedure for simultaneously determining chromium(VI), lead(II), tin(II), antimony(III), copper(II) and zinc(II) by square wave anodic stripping voltammetry (SWASV) in matrices involved in foods and food chain as wholemeal, wheat and maize meal is described.The digestion of each matrix was carried out using a concentrated HCl–HNO3–H2SO4 acidic attack mixture. Dibasic ammonium citrate buffer solution pH 6.5 was employed as the supporting electrolyte. The voltammetric measurements were carried out using, as working electrode, a stationary hanging mercury drop electrode (HMDE) and a platinum electrode and an AgAgClKClsat electrode as auxiliary and reference electrodes, respectively. The analytical procedure was verified by the analysis of the standard reference materials Wholemeal BCR-CRM 189, Wheat Flour NIST-SRM 1567a and Rice Flour NIST-SRM 1568a.For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (sr) was of the order of 3–5%. The accuracy, expressed as relative error (e) was generally of the order of 3–6%, while the detection limits were lower than 0.123 μg/g.In the presence of reciprocal interference, the standard addition method considerably improved the resolution of the voltammetric technique.Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meals sampled on market for sale. A critical comparison with spectroscopic measurements is also discussed.  相似文献   

7.
《Electroanalysis》2004,16(18):1478-1486
The voltammetric methods are very suitable and versatile techniques for the simultaneous metal determination in complex matrices. The present work, regarding the sequential determination of Cu(II), Pb(II), Cd(II), Zn(II) by square‐wave anodic stripping voltammetry (SWASV), As(III), Se(IV) by square‐wave cathodic stripping voltammetry (SWCSV) and Mn(II), Fe(III) by square‐wave voltammetry (SWV) in matrices involved in foods and food chain as wholemeal, wheat and maize meal, are an interesting example of the possibility to sequentially determine each single element in real samples. Besides the set up of the analytical method, particular attention is aimed either at the problem of possible signal interference or to show that, using the peak area Ap as instrumental datum, it is possible to achieve lower limits of detection. The analytical procedure was verified by the analysis of the standard reference materials: Wholemeal BCR‐CRM 189, Wheat Flour NIST‐SRM 1567a and Rice Flour NIST‐SRM 1568a. Precision, as repeatability, and accuracy, expressed as relative standard deviation and relative error, respectively, were lower than 6% in all cases. In the presence of reciprocal interference, the standard addition method considerably improved the resolution of the voltammetric technique. Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meals sampled on market for sale. A critical comparison with spectroscopic measurements is also discussed.  相似文献   

8.
The homogeneity of four reference materials was evaluated for Se by cyclic instrumental neutron activation analysis (CINAA). The relative standard deviation for Se measurements at ppb levels by CINAA was <12% for NIST Wheat Flour (SRM 1567) in 5–10 mg samples, while it was <11% for Chinese Hair (HH–CH-1), <13% for IAEA Animal Muscle (H-4) and 25% for IAEA Animal Blood (A-13) in 50 mg samples. The highest relative subsampling uncertainties were observed in the mass range of samples 50 mg for Chinese Hair, 100 mg for Wheat Flour and Animal Muscle and 300 mg for Animal Blood. The results of a one-way analysis of variance indicate that all reference materials above these mass ranges are adequately homogeneous with respect to Se distribution. Our data suggest that these materials, except Animal Blood, can be used as reference standards for Se in Quality assurance programs well below the sample masses re commended by the issuing agencies.  相似文献   

9.
An analytical procedure regarding the determination of copper(II), lead(II), cadmium(II), zinc(II) and antimony(III) in matrices involved in foods and food chain as wholemeal, wheat and maize meal is proposed. The digestion of each matrix was carried out using concentrated HCl suprapure at 130 °C for 3 h. Differential pulse anodic stripping voltammetry (DPASV) was employed for simultaneously determining all the elements, using a conventional three-electrode cell and 0.5 M HCl as supporting electrolyte. The analytical procedure has been verified on the reference standard materials Wholemeal BCR-CRM 189, Wheat Flour NIST-SRM 1567a and Rice Flour NIST-SRM 1568a. For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (sr), and the accuracy, expressed as relative error (e), were of the order of 3 to 6%. The limits of detection were in the range 0.009–0.096 μg/g.  相似文献   

10.
An analytical procedure for the sequential determination of Zn(II), Cr(VI), Cu(II), Sb(III), Sn(II), Pb(II) by square wave anodic stripping voltammetry (SWASV) and Fe(III), Mn(II), Mo(VI) by square wave voltammetry (SWV) in matrices involved in foods and food chain as wholemeal, wheat and maize meal is described.The digestion of each matrix was carried out using a concentrated HCl–HNO3–H2SO4 attack mixture, employing dibasic ammonium citrate buffer solution (pH 6.9 and 8.7) as supporting electrolytes. The analytical procedure was verified by the analysis of the standard reference materials Wholemeal BCR-CRM 189, Wheat Flour NIST-SRM 1567a and Rice Flour NIST-SRM 1568a.For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (sr) was of the order of 3–5%; the accuracy, expressed as relative error (e) was generally of the order of 3–6%.In presence of reciprocal interference, the standard addition method considerably improved the resolution of the voltammetric technique.Finally, the analytical procedure was transferred and applied to commercial meals sampled on market.A critical comparison with atomic absorption spectroscopic measurements is also discussed.  相似文献   

11.
Summary In order to improve the methods for the determination of vitamins in food for nutritional purposes, the Commission's Community Bureau of Reference (BCR) has initiated a comprehensive research programme consisting of intercomparisons of methods to identify and eliminate sources of error and the preparation of reference materials (RMs). Six food RMs have been prepared to date including brussels sprouts, mixed vegetables and pigs' liver (all in the lyophilised form), vitamin enriched milk powder, wholemeal flour and margarine. The first five materials have been packaged into heat sealable, aluminium-laminate sachets under an inert atmosphere; margarine is a canned product. The initial homogeneity results have indicated no detectable signs of inhomogeneity for the vitamins/RMs investigated. Stability testing has monitored both short-term stability at elevated temperatures (+25 to 40°C, 8 weeks) and long-term stability –30 to +20°C, 36 months). The former was used to evaluate the effect of adverse shipment conditions on vitamin stability. Vitamins C and B1, two of the more labile vitamins, have been found to be stable for up to 4 weeks at +25°C and 8 weeks at +37°C in brussels sprouts (RM 431) and wholemeal flour (RM 122), respectively.The results of long-term stability testing of vitamins C and B1 in these RMs indicate there was no significant degradation of vitamin C in RM 431 for up to 24 months at –18 and +4°C when the data was expressed on the basis of the –30°C data (analytical control). Similarly, no significant degradation for vitamin B1 in RM 122 was found at +4 and +20°C for up to 12 months, again after expressing the data on the basis of the analytical control (–20°C). Once acceptable homogeneity and stability results have been found, certification studies for each vitamin/RM are planned.  相似文献   

12.
Summary Wheat flour, pork meat and skim milk powder reference materials (RM) prepared and employed for the activities of the Sub-network on Trace Element Status in Food of the FAO European Cooperative Research Network on Trace Elements were subjected to an interlaboratory comparison study on the contents of Pb, Cd and Hg. The homogeneity of the above materials had earlier been shown to be within 2% for several essential elements and within 5 to 10% for Pb and Cd. An interlaboratory comparison study was conducted involving 17 reference laboratories recognized for their reliability and specialized in heavy metal determinations in biological materials. A total of seven methods based on four different analytical principles were employed to determine the contents of the above heavy metals. After the exclusion of outliers, the recommended concentration values expressed as the medians ±95% confidence limits were established. All of the recommended values reported here fell into category A, i.e. values recommended with a high degree of confidence according to the certification criteria established by Pszonicki. The present materials contain very low naturally occurring levels of all the heavy metals studied and have been successfully employed in the analytical quality control program of the above FAO study during the past five years.  相似文献   

13.
Summary NBS activities in biological reference materials during 1986–1988 are described with a preview of plans for future certifications of reference materials. During the period, work has been completed or partially completed on about 40 reference materials of importance to health, nutrition, and environmental quality. Some of the reference materials that have been completed during the period and are described include: creatinine (SRM 914a), bovine serum albumin (SRM 927a), cholesterol in human serum (SRM's 1951–1952), aspartate aminotransferase (RM 8430), cholesterol and fat-soluble vitamins in coconut oil (SRM 1563), wheat flour (SRM 1567a), rice flour (SRM 1568a), mixed diet (RM 8431a), dinitropyrene isomers and 1-nitropyrene (SRM 1596), and complex PAH's from coal tar (SRM 1597). Oyster tissue (SRM 1566a) is being analyzed and should be available in 1988.
NBS-Aktivitäten in biologischen Referenzmaterialien
  相似文献   

14.
Summary In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186), Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias.  相似文献   

15.
Multiple units of Standard Reference Materials (SRMs) 1566 Oyster Tissue, 1567 Wheat Flour, 1568 Rice Flour, and 1570 Trace Elements in Spinach, produced by the National Institute of Standards and Technology (NIST, then the National Bureau of Standards), were analyzed 17-20 years after the original certification dates and 12-15 years after the certificates became invalid. Instrumental neutron activation analysis and thermal neutron prompt gamma-ray activation analysis were used to measure mass fractions for 27 elements in these SRMs to revalidate them for use in quality assurance (QA) programs required for food analysis programs within the U.S. Food and Drug Administration. With the exception of Se in SRM 1567, all element mass fractions were in agreement with certified values and literature data. Some evidence of B loss from SRM 1568 was observed. These materials were judged to be suitable for continued use in QA programs. Findings showed that these matrixes exhibited stability of moisture, mass fraction, and weight basis for far longer (> or =15 years) than was indicated by the 5-year validity statement on the NIST Certificates of Analysis.  相似文献   

16.
    
Summary The certified, information, and other values of elemental contents were compared with results of neutron activation analysis (NAA) for the new Czechoslovak botanical reference materials (RMs) Green Algae 12-02-02, Lucerne 12-02-03, Wheat Bread Flour 12-02-04, and Rye Bread Flour 12-02-05. These were prepared by the Institute of Radioecology and Applied Nuclear Techniques (IRANT), Koice, and statistically evaluated after interlaboratory comparisons. For the majority of elements, a very good agreement was found between the IRANT values and the results of NAA. In several cases, however, significant differences were detected; possible analytical reasons for the differences and the suitability of a purely statistical evaluation of intercomparison results without analytical considerations for RM certification are discussed.  相似文献   

17.
在我国局部都存在不同程度的铅、镉、砷和铬的土壤和水资源污染,土壤和水域中的有毒有害元素经食物链累积在人体,对人们的身体造成极大的危害,因此对食品中这些限量元素进行准确高效定量非常必要。本文建立了微波消解-电感耦合等离子体质谱(ICP-MS)法对小麦粉中的Pb、Cd、As和Cr进行测量,测量方法采用内标法,内标元素选择Rh、In和Bi。另外对微波消解前处理方法和ICP-MS使用参数进行了优化,测量方法简单高效。工作标准曲线呈良好的线性关系,相关系数均大于0.9999。该方法采用GBW(E)100493小麦粉标准物质和NIST 1567b Wheat Flour对本实验所采用的方法进行验证,结果显示测量值和标准值一致,表明本实验中小麦粉中Pb、Cd、As和Cr的测定方法是准确可靠的。  相似文献   

18.
A simple solid phase extraction procedure for speciation of selenium(IV) and selenium(VI) in environmental samples has been proposed prior to graphite furnace atomic absorption spectrometry. The method is based on the solid phase extraction of the selenium(IV)-ammonium pyrrolidine dithiocarbamate (APDC) chelate on the Diaion HP-2MG. After reduction of Se(VI) by heating the samples in the microwave oven with 4 mol l−1 HCl, the system was applied to the total selenium. Se(VI) was calculated as the difference between the total selenium content and Se(IV) content. The experimental parameters, pH, amounts of reagents, eluent type and sample volume were optimized. The recoveries of analytes were found greater than 95%. No appreciable matrix effects were observed. The adsorption capacity of sorbent was 5.20 mg g−1 Se (IV). The detection limit of Se (IV) (3sigma, n = 11) is 0.010 μg l−1. The preconcentration factor for the presented system was 100. The proposed method was applied to the speciation of selenium(IV), selenium(VI) and determination of total selenium in natural waters and microwave digested soil, garlic, onion, rice, wheat and hazelnut samples harvested various locations in Turkey with satisfactory results. In order to verify the accuracy of the method, certified reference materials (NIST SRM 2711 Montana Soil, NIST SRM 1568a Rice Flour and NIST SRM 8418 Wheat Gluten) were analyzed and the results obtained were in good agreement with the certified values. The relative errors and relative standard deviations were below 6 and 10%, respectively.  相似文献   

19.
Summary NIST issues food related, chemical composition standard reference materials for validating food analyses. SRMs certified for inorganic constituents are: Non-Fat Milk Powder (SRM 1549), Oyster Tissue (SRM 1566a), Bovine Liver (SRM 1577a), Wheat Flour (SRM 1567a), Rice Flour (SRM 1568a), and Total Diet (SRM 1548). The certificate of analysis for the total diet SRM also provides a certified concentration for cholesterol. Oyster tissue, a renewal SRM, is certified for 25 elements including 6 (Al, Cl, I, P, S, and V), that had not been certified in the previously issued SRM 1566. The elemental certified concentrations are based on concordant results of two or more independent analytical methods. The chemical compositions of the six food matrix SRMs are tabulated. Three food matrix SRMs certified for organic constituents are: Cholesterol and Fat-Soluble Vitamins in Coconut Oil (SRM 1563), Cholesterol in Whole Egg Powder (SRM 1845) and Organics in Cod Liver Oil (SRM 1588). Serum and urine matrix SRMs are also available that may be useful for metabolic and bioavailability studies.  相似文献   

20.
INAA and anti-Compton spectrometry has been employed in the analysis of test bone samples. Validity and accuracy of the method were checked by the use of two biological reference materials procured from the National Institute of Standards and Technology, USA (NIST) and the International Atomic Energy Agency, Austria (IAEA). NIST 1486 Bone Meal (ca. 200–800 mg) and A-11 Milk Powder (ca. 200–600 mg) samples were irradiated in the 100 kW TRIGA Mainz reactor. Concentrations of 13 elements in both biological reference materials have been determined and were found in good agreement with the certified and provisional values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号