首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the thermodynamics of ion exchange equilibrium for uni-univalent Cl/I, Cl/Br and uni-divalent Cl/SO 4 2− , Cl/C2O 4 2− reaction systems was carried out using ion exchange resin Indion-830 (Type 1). The equilibrium constant K was calculated by taking into account the activity coefficients of ions both in solution and in the resin phase. For uni-univalent ion exchange reaction systems, the equilibrium constants K′ were also calculated from the mole fraction of ions in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems increased as the temperature grew, indicating the endothermic character of the exchange reactions with enthalpies of 38.2, 32.3, 7.6, and 11.4 kJ/mol, respectively. The article is published in the original.  相似文献   

2.
Tandem mass spectrometry provides information on the dissociation pathways of gas-phase ions by providing a link between product ions and parent ions. However, there exists a distinct possibility that a parent ion does not dissociate directly to the observed product ion, but that the reaction proceeds through unobserved reaction intermediates. This work describes the discovery and kinetic analysis of an unobserved reaction intermediate with a quadrupole ion trap. [a 4−NH3] ions formed from [YGβFL+H] ions dissociate to [(F*YG−NH3)−CO] ions. It is expected, however, from previous results, that [F*YG−NH3] ions should form prior to [(F*YG−NH3)−CO] ions. Double-resonance experiments are used to demonstrate the existence of intermediate [F*YG − NH3] ions. Various kinetic analyses are then performed using traditional collision-induced dissociation kinetics and double-resonance experiments. The phenomenological rates of formation and decay of peptide rearrangement ion dissociation products are determined by curve fitting decay and formation data generated with the kinetics experiments. The data generated predict an observable level of the intermediate in a time frame accessible but previously not monitored. By examining early product-ion formation, the intermediate ions, [F*YG−NH3]+, are observed.  相似文献   

3.
Ion exchange equilibrium constant (K) for Cl/Br and Cl/C2O42− system was studied at different temperatures from 30 to 45°C. For both uni-univalent and uni-bivalent exchange systems, the value of K increases with rise in temperature i.e., from 1.16 at 30°C to 2.95 at 45°C for Cl/Br system and 19.5 at 30°C to 30.0 at 45°C for Cl/C2O42− system indicating the endothermic ion exchange reaction. The difference in K values at the same temperature for the two was related to the ionic charge of exchangeable ions in the solution. The article is published in the original.  相似文献   

4.
The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl/I, Cl/Br, and uni-divalent Cl/SO42−, Cl/C2O42− reaction systems was carried out using ion-exchange resin Duolite A-113. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems were observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 17.21, 36.60, 19.50, 18.43 kJ/mol respectively.  相似文献   

5.
Sorption behaviour of monovalent Rb+, Tl+ and Ag+ is studied on chromium fericyanide gel. Log Kd vs log concentration plots show that Rb+ and Tl+ are sorbed through ion exchange mechanism in a higher concentration range of ammonium nitrate or nitric acid, whereas the adsorption of Ag+ is irreversible. It was found possible to elute Rb+ and Tl+ on the columns of this gel by 4 mol dm−3 NH4NO3 and 10 mol dm−3 HNO3, respectively. Binary separations of Rb+ and Tl+ from a number of other metal ions were achieved as other ions were found practically unadsorbed on these columns and were eluted with water of pH 2–3. Achieved separations are of radioanalytical and analytical importance.  相似文献   

6.
The structure of aqua complexes of alkali metal ions Me+(H2O) n , n = 1−6, where Me is Li, Na, K, Rb, and Cs, and complexes of 2,6-dimethylphenolate anion (CH3)2PhO selected as a model of the elementary unit of phenol-formaldehyde ion exchanger with hydrated alkali metal cations Me+(H2O) n , n = 0−5, was studied by the density functional method. The energies of successive hydration of the cations and the energies of binding of alkali metal hydrated cations with (CH3)2PhO depending on the number of water molecules n were calculated. It was shown that the dimethylphenolate ion did not have specific selectivity with respect to cesium and rubidium ions. The energies of hydration and the energies of binding of alkali metal cations with (CH3)2PhO decreased in the series Li+ > Na+ > K+ > Rb+ > Cs+ as n increased. The conclusion was drawn that the reason for selectivity of phenol-formaldehyde and other phenol compounds with respect to cesium and rubidium ions was the predomination of the ion dehydration stage in the transfer from an aqueous solution to the phenol phase compared with the stage of binding with ion exchange groups.  相似文献   

7.
Osmotic vapor pressure and density measurements have been carried out for binary aqueous and ternary aqueous solutions containing a fixed concentration of 18-crown-6 (0.2 mol⋅kg−1) and ammonium chloride or ammonium bromide at 298.15 K. The concentration of the ammonium salts was varied between 0.02 to 0.5 mol⋅kg−1. The measured water activities were used to obtain the activity coefficient of water and the mean molal activity coefficient of the ions in binary as well as ternary solutions. Using the method developed by Patil and Dagade reported earlier in this journal and the McMillan-Meyer pair and triplet Gibbs energy interaction parameters, the thermodynamic equilibrium constant (K) for the 18-crown-6:NH4 + complexes were determined. It is observed that the nature and polarizability of anions play important roles in imparting stability to the complexed species. The log10 K values for the 18-crown-6:NH4 + complexed species are lower than for the complexes involving alkali metal ions such as K+. The volume of complexation for the studied systems obtained from the apparent molar volumes of ammonium halides in ternary solutions are positive and of smaller magnitude than those reported for complexation with alkali ions. The results are further discussed in terms of water structural effects, complex formation, the role of counter anions and hydrophobic interactions.  相似文献   

8.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with H/D exchange reactions was utilized to explore the existence of different b5+ and b4+ fragment ion conformers/isomers of hexapeptide WHWLQL in the gas phase. Distinct H/D exchange trends for protonated WHWLQL ([M + H]+) and its b5+ and b4+ fragment ions (with ND3) were observed. Isolated 12Call isotopomers of both b5+ and b4+ fragment ions yielded bimodal distributions of H/D exchanged product ions. The H/D exchange reaction kinetics also confirmed that b5+ and b4+ fragment ions exist as combination of slow-exchanging (“s”) and fast-exchanging (“f”) species. The calculated rate constant for the first labile hydrogen exchange of [M + H]+ (k[M + H] + = 3.80 ± 0.7 × 10−10 cm3 mol−1 s−1) was ∼30 and ∼5 times greater than those for the “s” and “f” species of b5+, respectively. Data from H/D exchange of isolated “s” species at longer ND3 reaction times confirmed the existence of different conformers or isomers for b5+ fragment ions. The sustained off-resonance irradiation collision-activated dissociation (SORI-CAD) of WHWLQL combined with the H/D exchange reactions indicate that “s” and “f” species of b5+ and b4+ fragment ions can be produced in the ICR cell as well as the ESI source. The significance of these observations for detailed understanding of protein sequencing and ion fragmentation pathways is discussed.  相似文献   

9.
Oxidation of N-methylethylamine by bis(hydrogenperiodato)argentate(III) ([Ag(HIO6)2]5−) in alkaline medium results in demethylation, giving rise to formaldehyde and ethylamine as the oxidation products. The oxidation kinetics has been followed spectrophotometrically in the temperature range of 20.0–35.0 °C, and shows an overall second-order character: being first-order with respect to both Ag(III) and N-methylethylamine. The observed second-order rate constants k′ increase with increasing [OH] of the reaction medium, but decrease with increasing the total concentration of periodate. An empirical rate expression for k′ has been derived as: k′ = (k a + k b[OH])K 1/{f([OH])[IO4 ]tot + K 1}, where k a and k b are rate parameters, and K 1 is an equilibrium constant. These parameters have been evaluated at all the temperatures studied, enabling calculation of activation parameters. A reaction mechanism is suggested to involve two pre-equilibria, leading to formation of an intermediate Ag(III) complex, namely [Ag(HIO6)(OH)(MeNHEt)]2−. In the subsequent rate-determining steps, this intermediate undergoes inner-sphere electron transfer from the coordinated amine to the metal center via two distinct routes, one of which is spontaneous while the other is mediated by a hydroxide ion.  相似文献   

10.
The reaction of aniline with hydrogen atom is investigated herein using the hybrid meta-DFT functional of BB1 K. Hydrogen atom is found to preferentially add at an ortho position. However, the fate of the o-(C6H5NH2)H adduct is found to be solely the deactivation of the initial addition channel. The rate constant for the abstraction channel (C6H5NH2 + H → C6H5NH + H2) is fitted by the expression 1.10 × 10−11 exp(−4,200/T) cm3 molecule−1 s−1. Our calculated rate constant for the abstraction channel agrees very well with the available experimental measurements. Satisfactory agreement is found between calculated and experimental measurements for the displacement channel (C6H5NH2 + H → C6H6 + NH2). Our detailed analysis for the corresponding displacements in toluene and phenol suggests that the three systems exhibit similar behavior with regard to the relative importance of abstraction and displacement channels.  相似文献   

11.
The equilibrium constants, K 2, have been determined for the proton-transfer reactions of 1-phenacylquinolinium ion, PHQ+, with several amines {triethylamine (TEA), N,N,N,N′-tetramethylethylenediamine (ED), N,N,N′, N′-tetramethylpropanediamine (PD), N,N,N,N′-tetramethylbutanediamine (BD), and 1,8-bis(dimethylamino-naphthalene (DMAN)} in acetonitrile (AN), AN-tetrahydrofuran (THF) and AN-ethanol (EtOH) mixtures. The reaction was followed spectrophotometrically using a stopped-flow technique. The K 2 value decreased for DMAN and increased for TEA with increasing vol-% of THF in AN-THF mixtures. The changes in the K 2 value for ED, PD and BD changed in the order: ED, PD and BD from a pattern similar to TEA to a pattern similar to DMAN. The change in the K 2 value for DMAN with increasing vol-% of THF in AN-THF mixtures was explained by the effect of polarity on the stability of PQ+ (the deprotonated product of PHQ+). The effect of THF on the K 2 value is consistent with that of the peak wavelength of the absorption spectrum of PQ+. The change in the K 2 value for TEA, ED, PD and BD depended on the structures of the protonated bases, one of the products for this reaction. The effect of EtOH on the K 2 value for DMAN was examined in ternary EtOH-THF-AN mixtures that contain different amounts of EtOH and whose relative permittivities were adjusted to that of EtOH. The K 2 value increased with increasing vol-% of EtOH because of the stabilization of PQ+ upon the formation of the hydrogen-bonded complex with EtOH. The absorption spectrum of PQ+ demonstrated a blue shift as the vol-% of EtOH increased.  相似文献   

12.
Single crystals of gallium analogs of K+- and NH+4-β″-alumina (K+- and NH+4-β″-gallate) were synthesized by ion exchanging Na+-β″-gallate. Crystal structures of the two gallates were refined using a single-crystal X-ray diffraction method. The positive charges due to excess K+ ions over the stoichiometric β-alumina composition in K+-β″-gallate were compensated by substituting Na+ ions for Ga3+ ions at the middle of spinel block. These Na+ ions were expelled from the crystals by ion exchange for NH+4 ions with considerable changes in crystal structure. The excess positive charges in NH+4-β″-gallate were neutralized by O2− ions at the mO site associating with a new type of Frenkel defects around the conduction plane. The charge-compensation mechanism of these gallates were discussed from the crystal chemical point of view.  相似文献   

13.
A new inorganic ion-exchanger, zirconium tugnstoarsenate, has been synthesized which has been characterized by chemical analysis, thermogravimetry, X-ray and infrared spectroscopy. The ion exchanger has been found to be stable in acids and neutral salt solutions. The Kd values for 30 metal ions have been determined at pH 3–4 which show that the exchanger has high affinity for UO 2 2+ , ZrO2+, Cs+ and Tl+ ions. The variation of Kd for a number of metal ions as a function of concentration of nitric acid and ammonium nitrate has been investigated to elucidate the probable exchange mechanism and to work out conditions for elution. Some binary separations, viz. Sr2+−Cs+, Sr2+−Rb+, Sr2+−Y3+, Fe3+−Al3+, Fe3+−Zn2+ and Zn2+−Hg2+ in trace amounts have been carried out on the column of the exchanger which demonstrate the utility of the exchanger in radionalytical and analytical chemistry.  相似文献   

14.
Low-energy CAD product-ion spectra of various molecular species of phosphatidylserine (PS) in the forms of [M−H] and [M−2H+Alk] in the negative-ion mode, as well as in the forms of [M+H]+, [M+Alk]+, [M−H+2Alk]+, and [M−2H+3Alk]+ (where Alk=Li, Na) in the positive-ion mode contain rich fragment ions that are applicable for structural determination. Following CAD, the [M−H] ion of PS undergoes dissociation to eliminate the serine moiety (loss of C3H5NO2) to give a [M−H−87] ion, which equals to the [M−H] ion of a phoshatidic acid (PA) and give rise to a MS3-spectrum that is identical to the MS2-spectrum of PA. The major fragmentation process for the [M−2H+Alk] ion of PS arises from primary loss of 87 to give rise to a [M−2H+Alk−87] ion, followed by loss of fatty acid substituents as acids (RxCO2H, x=1,2) or as alkali salts (e. g., RxCO2Li, x=1,2). These fragmentations result in a greater abundance of [M−2H+Alk−87−R2CO2H] than [M−2H+Alk−87−R1CO2H] and a greater abundance of [M−2H+Alk−87−R2CO2Li] than [M−2H+Alk−87−R1CO2Li]; while further dissociation of the [M−2H+Alk−87−R2(or 1)CO2Li] ions gives a preferential formation of the carboxylate anion at sn-1 (R1CO2) over that at sn-2 (R2CO2). Other major fragmentation process arises from differential loss of the fatty acid substituents as ketenes (loss of Rx′CH=CO, x=1,2). This results in a more prominent [M−2H+Alk−R2′CH=CO] ion than [M−2H+Alk−R1′CH=CO] ion. Ions informative for structural characterization of PS are of low abundance in the MS2-spectra of both the [M+H]+ and the [M+Alk]+ ions, but are abundant in the MS3-spectra. The MS2-spectrum of the [M+Alk]+ ion contains a unique ion corresponding to internal loss of a phosphate group probably via the fragmentation processes involving rearrangement steps. The [M−H+2Alk]+ ion of PS yields a major [M−H+2Alk−87]+ ion, which is equivalent to an alkali adduct ion of a monoalkali salt of PA and gives rise to a greater abundance of [M−H+2Alk−87−R1CO2H]+ than [M−H+2Alk−87−R2CO2H]+. Similarly, the [M−2H+3Alk]+ ion of PS also yields a prominent [M−2H+3Alk−87]+ ion, which undergoes consecutive dissociation processes that involve differential losses of the two fatty acyl substituents. Because all of the above tandem mass spectra contain several sets of ion pairs involving differential losses of the fatty acid substituents as ketenes or as free fatty acids, the identities of the fatty acyl substituents and their positions on the glycerol backbone can be easily assigned by the drastic differences in the abundances of the ions in each pair.  相似文献   

15.
Determination of ion-exchange equilibrium constant (K) for Cl/I and Cl/C2O42− system was studied at different temperatures from 25 to 45°C and by varying concentration of iodide and oxalate ion solution. For both uni-univalent and uni-bivalent exchange systems, using 0.5 g of ion-exchange resin DUOLITE A-116 (in chloride form), the value of K increases with rise in temperature i.e., from 13.0 at 25°C to 19.05 at 45°C for Cl/I system and 33.0 at 25°C to 63.0 at 45°C for Cl/C2O42− system indicating the endothermic ion-exchange reaction. The difference in K values at the same temperature for the two was related to the ionic charge of exchangeable ions in the solution.  相似文献   

16.
Summary.  The distribution of tetraalkylammonium ions (C n H 2n+1 )4N+ (R +, TAAn +, n = 4–7) with picrate ion (pic ) and inorganic anions X , (Cl, Br, ClO 4), into various inert organic solvents was studied at 25.0°C. The distribution data were analyzed by taking into consideration the distribution of ion pairs, R + · X , and the dimerization of the ion pairs, (R + · X )2, in the organic phase. The ion-pair, distribution constant, K dist, increases with increasing chain length of the tetraalkylammonium ion and with increasing ionic radius of the anion. The values of K dist show a good correlation with the E T value of solvent, i.e. the solvation ability with respect to the anion, and smoothly increase with increasing E T. The effect of the solvent on the dimerization constants, K dim, is markedly different between the ion pairs of picrate ion and inorganic anions. In the case of picrate, K dim significantly decreases with decreasing length of the alkyl chain of the tetraalkylammonium ion, but hardly changes by changing the solvent. On the other hand, in the case of ion pairs of inorganic anions the value of K dim decreases with decreasing E T and is almost constant for all anions. These results were reasonably explained by the difference of the solvation of the anion moieties of the monomeric and dimeric ion pairs. Received May 15, 2001. Accepted (revised) July 18, 2001  相似文献   

17.
 The distribution of tetraalkylammonium ions (C n H 2n+1 )4N+ (R +, TAAn +, n = 4–7) with picrate ion (pic ) and inorganic anions X , (Cl, Br, ClO 4), into various inert organic solvents was studied at 25.0°C. The distribution data were analyzed by taking into consideration the distribution of ion pairs, R + · X , and the dimerization of the ion pairs, (R + · X )2, in the organic phase. The ion-pair, distribution constant, K dist, increases with increasing chain length of the tetraalkylammonium ion and with increasing ionic radius of the anion. The values of K dist show a good correlation with the E T value of solvent, i.e. the solvation ability with respect to the anion, and smoothly increase with increasing E T. The effect of the solvent on the dimerization constants, K dim, is markedly different between the ion pairs of picrate ion and inorganic anions. In the case of picrate, K dim significantly decreases with decreasing length of the alkyl chain of the tetraalkylammonium ion, but hardly changes by changing the solvent. On the other hand, in the case of ion pairs of inorganic anions the value of K dim decreases with decreasing E T and is almost constant for all anions. These results were reasonably explained by the difference of the solvation of the anion moieties of the monomeric and dimeric ion pairs.  相似文献   

18.
Nonempirical methods are used to calculate the geometric parameters, the frequencies of normal vibrations, and thermochemical characteristics of ions existing in saturated vapors over sodium bromide and iodide: Na2X+, NaX2, Na3X2+, and Na2X3 (X = Br, I). According to the calculations, Na2X+ and NaX2 triatomic ions have a linear equilibrium configuration of D h symmetry. Pentaatomic ions can exist in the form of three isomers: linear with D h symmetry, planar cyclic with C 2v symmetry, and bipyramidal with D 3h symmetry. At a temperature of ∼1000 K, Na3X2+ and NaX3 pentaatomic ions are shown to be present in vapor mainly in the form of linear isomers. The energies and enthalpies of ion molecular reactions with the participation of the above ions are calculated, and the formation enthalpies of the ions are determined, Δ f H o(0 K): 293±2 kJ/mol (Na2Br+), 354±2 kJ/mol (Na2I+), −536±2 kJ/mol (NaBr2, −458±2 kJ/mol (NaI2, 24±5 kJ/mol (Na3Br2+, 143±5 kJ/mol (Na3I2+, −810±5 kJ/mol (Na2Br3, and −675±5 kJ/mol (Na2I3.  相似文献   

19.
Summary The exchange of Co(NH3)6]3+-ions on amberlite IRC-50 resin has been studied at room temperature. For this exchange process the cations are effective in the order: Cs+<Rb+<K+<Na+<Li+<NH4 +<Mg2+ <Ca2+<H+ and (C2H5)4N<(CH3)4N+ ≪Cetyltrimethylammonium-ion <Cetylpyridinium-ion. The logarithm of the selectivity coefficient gives linear graphs when plotted against the radius of the hydrated ions or the reciprocals of theDebye-Hückel parameter?.  相似文献   

20.
It has been shown that the NO3 and Cl ions in methylpyperidine, cetylmorpholine, quinuclidine, and triethyl quaternary ammonium salts (QAS) are characterized by approximately equal exchange constants K Cl−NO3− despite a significant difference in the structure of QAS. For methylpyperidine, cetylmorpholine, and triethyl salts, K Cl−NO3− are almost equal, which can be attributed to the special features of ethyl radicals fixed into the cycles, which occupy a smaller volume and thus reduce the effect of the length of the third substituent, so that the parameters of the closest approach become nearer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号