首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The xenon–difluoronitrenium ion F2N? Xe+, a novel xenon–nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF3 by Xe. According to Møller–Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (ΔH and ΔG) of this process are predicted to be ?3 kcal mol?1. The conceivable alternative formation of the inserted isomers FN? XeF+ is instead endothermic by approximately 40–60 kcal mol?1 and is not attainable under the employed ion‐trap mass spectrometric conditions. F2N? Xe+ is theoretically characterized as a weak electrostatic complex between NF2+ and Xe, with a Xe? N bond length of 2.4–2.5 Å, and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol?1, respectively. F2N? Xe+ is more fragile than the xenon–nitrenium ions (FO2S)2NXe+, F5SN(H)Xe+, and F5TeN(H)Xe+ observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon–nitrogen species could be obtained under these experimental conditions.  相似文献   

2.
Systematic experimental and theoretical studies on anionic phosphate species in the gas phase are almost nonexistent, even though they could provide a benchmark for enhanced comprehension of their liquid-phase chemical behavior. Gaseous MH(2)P(2)O(7) (-) ions (M=Li, Na, K, Rb, Cs), obtained from electrospray ionization of solutions containing H(4)P(2)O(7) and MOH or M salts as a source of M(+) ions were structurally assayed by collisionally activated dissociation (CAD) mass spectrometry and theoretical calculations at the B3LYP/6-31+G* level of theory. The joint application of mass spectrometric techniques and theoretical methods allowed the MH(2)P(2)O(7) (-) ions to be identified as having a structure in which the linear diphosphate anion is coordinated to the M(+) ion (I) and provides information on gas-phase isomerization processes in the [PO(3)...MH(2)PO(4)](-) clusters II and the [P(2)O(6)...M...H(2)O](-) clusters IV. Studies of gas-phase reactivity by Fourier transform ion cyclotron resonance (FTICR) and triple quadrupole (TQ) mass spectrometry revealed that the MH(2)P(2)O(7) (-) ions react with selected nucleophiles by clustering, proton transfer and addition-elimination mechanisms. The influence of the coordination of alkali metal ions on the chemical behavior of pyrophosphate is discussed.  相似文献   

3.
As a continuing theoretical study on the alpha-effect in the S(N)2 reactions at saturated carbon centers, 28 gas-phase reactions have been examined computationally by using the high-level G2(+) method. The reactions include: Nu(-)+CH(3)X-->CH(3)Nu+X(-) (X=F and Cl; Nu(-)=HO(-), HS(-), CH(3)O(-), Cl(-), Br(-), HOO(-), HSO(-), FO(-), ClO(-), BrO(-), NH(2)O(-), and HC(==O)OO(-)). It was found that all alpha-nucleophiles examined exhibit downward deviations from the correlation line between the overall barriers and proton affinities for normal nucleophiles, indicating the existence of the alpha-effect in the gas phase. The transition states (TS) for the alpha-nucleophiles are characterized by less advanced C--X bond cleavages than the normal nucleophiles, leading to smaller deformation energies and overall barriers. The size of the alpha-effect is related to the electron density on the alpha-atom, and increases when the position of alpha-atom is changed from left to right and from bottom to top in the periodic table. The reaction with CH(3)F exhibits a larger alpha-effect than that with CH(3)Cl, which can be explained by a later TS and a more positively charged methyl group at the TS for CH(3)F, [NuCH(3)F](- not equal). Thus, a higher electron density on the alpha-atom and a more positive methyl moiety at the TS result in a larger alpha-effect.  相似文献   

4.
Gas‐phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with glycine results in the formation of [(R)2Sn(Gly)‐H]+and [(R)3Sn(Gly)]+ ions, respectively. Di‐organotin complexes appear much more reactive than those involving tri‐organotins. (MS/MS) spectra of the [(R)3Sn(Gly)]+ ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn]+ carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)‐H]+complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH]+ (?57 u),[(R)2SnNH2]+( ?58 u) and [(R)2SnH]+ (?73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH]+and [(R2)SnNH2]+ions. Interestingly, formation [(R)2SnH]+ ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)‐H]+complexes, a preferable bidentate interaction of the type η2‐O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn]+ ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.  相似文献   

6.
The structure and reactivity of gaseous H5P2O8- ions obtained from the chemical ionization (CI) of an H4P2O7/H2O mixture and from electrospray ionization (ESI) of CH3CN/H2O/H4P2O7 solutions were investigated by Fourier transform ion cyclotron (FTICR) and triple quadrupole mass spectrometry. Theoretical calculations performed at the B3LYP/6-31+G* level of theory and collisionally activated dissociation (CAD) mass spectrometric results allowed the ionic population obtained in the CI conditions to be structurally characterized as a mixture of gaseous [H3P2O7...H2O]-, [H3PO4...H2PO4]-, and [PO3...H3PO4...H2O]- clusters. The energy profile emerging from theoretical calculations affords insight into the mechanism of diphosphate ion hydrolysis and synthesis.  相似文献   

7.
The mechanisms of the reactions: CH(3)CFCl(2) + Cl (R1) and CH(3)CF(2)Cl + Cl (R2) are studied over a wide temperature range (200-3000 K) using the dual-level direct dynamics method. The minimum energy path calculation is carried out at the MP2/6-311G(d,p) and B3LYP/6-311G(d,p) levels, and energetic information is further refined by the G3(MP2) theory. The H-abstraction from the out-of-plane for (R1) is the major reaction channel, while the in-plane H-abstraction is the predominant route of (R2). The canonical variational transition-state theory (CVT) with the small-curvature tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions and hydrogenation reactions as working chemical reactions, the standard enthalpies of formation for CH(3)CFCl(2), CH(3)CF(2)Cl, CH(2)CFCl(2), and CH(2)CF(2)Cl are evaluated at the CCSD(T)/6-311 + G(3df,2p)//MP2/6-311G(d,p) level of theory. The results indicate that the substitution of fluorine atom for the chlorine atom leads to a decrease in the C-H bond reactivity with a small increase in reaction enthalpies. Also, for all reaction pathways the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants.  相似文献   

8.
By means of the dual‐level direct dynamics method, the mechanisms of the reactions, CH3CF2Cl + OH → products (R1) and CH3CFCl2 + OH → products (R2), are studied over a wide temperature range 200–2000 K. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6‐311G(d,p) level, and then the energy profiles of the reactions are refined with the interpolated single‐point energy method at the G3(MP2) level. The canonical variational transition‐state theory with the small‐curvature tunneling (SCT) correction method is used to calculate the rate constants. For the title reactions, three reaction channels are identified and the H‐abstraction channel is the major pathway. The results indicate that F substitution has a significant (reductive) effect on hydrochlorofluorocarbon reactivity. Also, for all H‐abstraction reaction channels the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants calculation. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
10.
11.
The structure and stability of various HCN2+ isomeric structures have been investigated at the complete active space SCF (CASSCF) and multireference-configuration interaction [MR-Cl-SD(Q)] levels of theory with the 6-31G(d) and 6-311G(d,p) basis sets. The investigated species include the singlet (S) and triplet (T) open-chain H-N-C-N+ ions 1S, 1S', and 1T, the open-chain H-C-N-N+ ions 2S, 2S', and 2T, the HC-N2+ cyclic structures 3S and 3T, and the HN-CN+ cyclic structures 4S and 4T. All these species have been identified as true energy minima on the CASSCF(8,7)/6-31G(d) potential energy surface, and their optimised geometries, refined at the CASSCF(8,8)/6-31G(d) level of theory, have been used to perform single point calculations at the [MR-Cl-SD(Q]/6-311G(d,p) computational level. The most stable structure was the H-N-C-N+ ion 1T, whose absolute enthalpy of formation at 298.15 K has been estimated as 333.9 +/- 2 kcalmol(-1) using the Gaussian-3 (G3) procedure. The two species closest in energy to 1T are the triplet H-C-N-N+ ion 2T and the singlet diazirinyl cation 3S, whose G3 enthalpies of formation at 298.15 K are 343.5 +/- 2 and 340.6 +/- 2 kcalmol(-1), respectively. Finally, we have discussed the implications of our calculations for the detailed structure of the HCN2+ ions formed in the reaction between N3+ and HCN, experimentally observed by flowing after-glow-selected ion flow/drift tube mass spectrometry and possibly occurring in Titan's atmosphere.  相似文献   

12.
The gas-phase reactions between ethylenediamine (en) and Cu(+) have been investigated by means of mass spectrometry techniques. The MIKE spectrum reveals that the adduct ions [Cu(+)(H(2)NCH(2)CH(2)NH(2))] spontaneously decompose by loosing H(2), NH(3) and HCu, the loss of hydrogen being clearly dominant. The spectra of the fully C-deuterated species show the loss of HD, NH(3) and CuD but no losses of H(2), D(2), NH(2)D, NHD(2), ND(3) or CuH are observed. This clearly excludes hydrogen exchange between the methylene and the amino groups as possible mechanisms for the loss of ammonia. Conversely, methylene hydrogen atoms are clearly involved in the loss of molecular hydrogen. The structures and bonding characteristics of the Cu(+)(en) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by DFT calculations carried out at B3LYP/6-311+G(2df,2p)//B3LYP/6-311G(d,p) level. Based on the topology of this PES the most plausible mechanisms for the aforementioned unimolecular fragmentations are proposed. Our theoretical estimates indicate that Cu(+) strongly binds to en, by forming a chelated structure in which Cu(+) is bridging between both amino groups. The binding energy is quite high (84 kcal mol(-1)), but also the products of the unimolecular decomposition of Cu(+)(en) complexes are strongly bound Cu(+)-complexes.  相似文献   

13.
H(3)P(2)O(7) (-) ions were obtained in an electrospray ion source of a Fourier transform ion cyclotron resonance (ESI/FTICR) mass spectrometer from a CH(3)CN/H(2)O (1:1) pyrophosphoric acid solution and in the ionic source of a triple quadrupole (TQ) mass spectrometer from the chemical ionisation (CI) of pyrophosphoric acid introduced by a thermostatically controlled direct insertion probe. The ions were structurally characterised by mass spectrometric techniques and theoretical calculations. Consistent with collisionally activated dissociation (CAD) mass spectrometric results, theoretical calculations identified the linear diphosphate anion (I) as the most stable isomer on the H(3)P(2)O(7) (-) potential energy surface. The joint application of mass spectrometric techniques and theoretical methods provided information on the dissociative processes of diphosphate anions in the gas phase. Finally, this study provides an insight into the structures and stabilities of the [H(3)PO(4).PO(3)](-), [HP(2)O(6).H(2)O](-) and [H(2)PO(4).HPO(3)](-) clusters and allows the stability and structure of the dimetaphosphate anion, HP(2)O(6) (-), to be investigated at the B3LYP6-31+G* and CCSD(T) levels of theory.  相似文献   

14.
The effect that unsaturation has on the intrinsic acidity of boranes, alanes, and gallanes, was analyzed by B3 LYP and CCSD(T)/6-311+G(3df,2p) calculations on methyl-, ethyl-, vinyl-, and ethynylboranes, -alanes and -gallanes, and on the corresponding hydrides XH3. Quite unexpectedly, methylborane, which behaves as a carbon acid, is predicted to have an intrinsic acidity almost 200 kJ mol(-1) stronger than BH3, reflecting the large reinforcement of the C--B bond, which upon deprotonation becomes a double bond through the donation of the lone pair created on the carbon atom into the empty p orbital of the boron. Also unexpectedly, and for the same reason, the saturated and alpha,beta-unsaturated boranes are much stronger acids than the corresponding hydrocarbons, in spite of being carbon acids as well. The Al derivatives also behave as carbon acids, but in this case the most favorable deprotonation process occurs at C beta, leading to the formation of rather stable three-membered rings, again through the donation of the C beta lone pair into the empty p orbital of Al. For Ga-containing compounds the deprotonation of the GaH2 group is the most favorable process. Therefore only Ga derivatives behave similarly to the analogues of Groups 14, 15, and 16 of the periodic table, and the saturated derivatives exhibit a weaker acidity than the unsaturated ones. Within Group 13, boranes are stronger acids than alanes and gallanes. For ethyl and vinyl derivatives, alanes are stronger acids than gallanes. We have shown, for the first time, that acidity enhancement for primary heterocompounds is not only dictated by the position of the heteroatom in the periodic table and the nature of the substituent, but also by the bonding rearrangements triggered by the deprotonation of the neutral acid.  相似文献   

15.
The gas‐phase interactions of cysteine with di‐organotin and tri‐organotin compounds have been studied by mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with cysteine results in the formation of [(R)2Sn(Cys‐H)]+ and [(R)3Sn(Cys)]+ ions, respectively. MS/MS spectra of [(R)2Sn(Cys‐H)]+ complexes are characterized by numerous fragmentation processes, notably associated with elimination of NH3 and (C,H2,O2). Several dissociation routes are characteristic of each given organic species. Upon collision, both the [(R)3Sn(Gly)]+ and [(R)3Sn(Cys)]+ complexes are associated with elimination of the intact amino acid, leading to the formation of [(R)3Sn]+ cation. But for the latter complex, two additional fragmentation processes are observed, associated with the elimination of NH3 and C3H4O2S. Calculations indicate that the interaction between organotins and cysteine is predominantly electrostatic but also exhibits a considerable covalent character, which is slightly more pronounced in tri‐organotin complexes. A preferred bidentate interaction of the type ‐η2‐S‐NH2, with sulfur and the amino group, is observed. As for the [(R)3Sn(Cys)]+ complexes, their stability is due to the combination of the hydrogen bond taking place between the amino group and the sulfur lone pair and the interaction between the carboxylic oxygen atom and the metal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports on the gas‐phase radical–radical dynamics of the reaction of ground‐state atomic oxygen [O(3P), from the photodissociation of NO2] with secondary isopropyl radicals [(CH3)2CH, from the supersonic flash pyrolysis of isopropyl bromide]. The major reaction channel, O(3P)+(CH3)2CH→C3H6 (propene)+OH, is examined by high‐resolution laser‐induced fluorescence spectroscopy in crossed‐beam configuration. Population analysis shows bimodal nascent rotational distributions of OH (X2Π) products with low‐ and high‐N′′ components in a ratio of 1.25:1. No significant spin–orbit or Λ‐doublet propensities are exhibited in the ground vibrational state. Ab initio computations at the CBS‐QB3 theory level and comparison with prior theory show that the statistical method is not suitable for describing the main reaction channel at the molecular level. Two competing mechanisms are predicted to exist on the lowest doublet potential‐energy surface: direct abstraction, giving the dominant low‐N′′ components, and formation of short‐lived addition complexes that result in hot rotational distributions, giving the high‐N′′ components. The observed competing mechanisms contrast with previous bulk kinetic experiments conducted in a fast‐flow system with photoionization mass spectrometry, which suggested a single abstraction pathway. In addition, comparison of the reactions of O(3P) with primary and tertiary hydrocarbon radicals allows molecular‐level discussion of the reactivity and mechanism of the title reaction.  相似文献   

17.
The mechanism of the gas‐phase reactions of SiHn+ (n = 1,2) with NF3 were investigated by ab initio calculations at the MP2 and CAS‐MCSCF level of theory. In the reaction of SiH+, the kinetically relevant intermediates are the two isomeric forms of fluorine‐coordinated intermediate HSi‐F‐NF2+. These species arise from the exoergic attack of SiH+ to one of the F atoms of NF3 and undergo two competitive processes, namely an isomerization and subsequent dissociation into SiF+ + HNF2, and a singlet‐triplet crossing so to form the spin‐forbidden products HSiF+ + NF2. The reaction of SiH2+ with NF3 involves instead the concomitant formation of the nitrogen‐coordinated complex H2Si‐NF3+ and of the fluorine‐coordinated complex H2Si‐F‐NF2+. The latter isomer directly dissociates into NF2+ + H2SiF, whereas the former species preferably undergoes the passage through a conical intersection point so to form a H2SiF‐NF2+ isomer, which eventually dissociates into H2SiF+ and NF2. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The kinetics for the gas-phase reaction of phenyl radical with propyne has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum chemical calculations. Absolute rate constants measured by the CRDS technique can be expressed by the following Arrhenius equation: (k/cm(3) mol(-1) s(-1)): k(propyne)(T=301-428 K)=(3.68+/-0.92) x 10(11)exp[-(1685+/-80)/T]. The experiment is unable to distinguish between the possible reactive channels, but theory indicates that phenyl radicals preferably add to the unsaturated terminal carbon atom in propyne under our experimental conditions. Theoretical kinetic calculations, employing high-level G2M(RCC, RMP2) and G3 energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, reproduce the total experimental rate constants within a factor of three. Calculated total and branching rate constants are provided for high-T kinetic modeling. Addition reactions of phenyl to C3H4 are estimated to be less important molecular-growth pathways in high-T conditions (T>1000 K) in comparison to the C6H5 + C2H2 reaction.  相似文献   

19.
A consistent set of group additive values ΔGAV° for 46 groups is derived, allowing the calculation of rate coefficients for hydrocarbon radical additions and β-scission reactions. A database of 51 rate coefficients based on CBS-QB3 calculations with corrections for hindered internal rotation was used as training set. The results of this computational method agree well with experimentally observed rate coefficients with a mean factor of deviation of 3, as benchmarked on a set of nine reactions. The temperature dependence on the resulting ΔGAV°s in the broad range of 300–1300 K is limited to ±4.5 kJ mol−1 on activation energies and to ±0.4 on logA (A: pre-exponential factor) for 90 % of the groups. Validation of the ΔGAV°s was performed for a test set of 13 reactions. In the absence of severe steric hindrance and resonance effects in the transition state, the rate coefficients predicted by group additivity are within a factor of 3 of the CBS-QB3 ab initio rate coefficients for more than 90 % of the reactions in the test set. It can thus be expected that in most cases the GA method performs even better than standard DFT calculations for which a deviation factor of 10 is generally considered to be acceptable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号