首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Grafting of biocompatible polymer onto the surface of silica nanoparticles was achieved by radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), initiated by azo groups previously introduced onto the surface or by a system consisting of Mo(CO)6 and trichloroacetyl groups on the silica surface. Both of these systems have the ability to initiate graft polymerization of MPC, resulting in the formation of poly(MPC)-grafted silica, but the percentage of poly(MPC) grafting for the latter initiating system was much higher than that of the former. The amount of moisture that could be adsorbed onto the silica surface was found to increase with increasing poly(MPC) grafting. This indicates that grafting of poly(MPC) onto the silica surface markedly increases the hydrophilic nature of the surface. The contact angle of water in composites prepared from poly(vinyl alcohol) and poly(MPC)-grafted silica was found to decrease with increasing poly(MPC)-grafted silica content. When poly(MPC)-grafted silica was added to water containing a small amount of chloroform, it was found to act as stabilizer for droplets of chloroform. In addition, according to tests by the Lee-White method, poly(MPC)-grafted silica shows non-thrombogenic characteristics.  相似文献   

2.
Phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], was grafted with polyethylene (PE) membrane using photoinduced polymerization technique to make the membrane resistant to cell adhesion. The water contact angle on the PE membrane grafted with poly(MPC) decreased with an increase in the photopolymerization time. This decrease corresponded to the increase in the amount of poly(MPC) grafted on the PE surface. The same graft polymerization procedure was applied using other hydrophilic monomers, such as acrylamide (AAm), N-vinylpyrrolidone (VPy) and methacryloyl poly(ethylene glycol) (MPEG). These monomers were also polymerized to form grafted chains on the PE membrane, and the grafting was confirmed with X-ray photoelectron spectroscopy. Analysis of amount and distribution of plasma proteins at the plasma-contacting surface of the original and the modified PE membranes were analyzed using immunogold assay. The grafting of poly(MPC) and poly(VPy) on PE membrane reduced the plasma protein adsorption significantly compared with that on the original PE membrane. However, the PE membranes grafted with poly(AAm) or poly(MPEG) did not show any effects on protein adsorption. Platelet adhesion on the original and modified PE membranes from platelet-rich plasma was also examined. A large number of platelets adhered and activated on the original PE membrane. Grafting with poly(AAm) did not suppress platelet adhesion, but grafting with poly(MPC) or poly(VPy) on the PE membrane was effective in preventing platelet adhesion. It is concluded that the introduction of the phosphorylcholine group on the surface could decrease the cell adhesion to substrate polymer.  相似文献   

3.
Zwitterionic and cationic polyelectrolyte brushes were prepared by surface-initiated atom transfer radical polymerization of 2-methacryloyloxy- ethyl phosphorylcholine (MPC) and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), respectively. The poly(DMAEMA) brush was treated with methyl iodide to form poly[2-(methacryloyloxy) ethyltrimethylammonium iodide] [poly(METAI)]. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analyzed by contact angle measurements, neutron reflectivity (NR) and macroscopic friction tests. Both polyelectrolyte brushes exhibited hydrophilic properties. The contact angle of the poly(MPC) brush surface against water was ca. 0° in air and the contact angle of the air bubble in water was ca. 170°. The air bubble in water hardly attached to the poly(MPC) brush surface, indicating super hydrophilic characteristics. NR measurements of poly(MPC) and poly(METAI) brushes showed that the grafted polymer chains were extended from the substrate surface in a good solvent such as water. Interestingly, NR study did not reveal the shrinkage of the brush chain in salt solution. The polyelectrolyte brushes immersed in both water and NaCl solution at various concentrations showed a low friction coefficient and low adhesion force.  相似文献   

4.
PNIPAM chain collapse depends on the molecular weight and grafting density   总被引:1,自引:0,他引:1  
This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.  相似文献   

5.
Surfaces based on grafted poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) "brushes" with a constant graft density of 0.39 chain/nm2 and chain length from 5 to 200 monomer units were prepared by surface-initiated atom transfer radical polymerization (ATRP) on silicon wafers. The chain length and layer thickness of the poly(MPC) grafts were varied via the ratio of MPC to sacrificial initiator. The surfaces were characterized by water contact angle, XPS, and AFM. The effect of poly(MPC) chain length on fibrinogen and lysozyme adsorption was studied in TBS buffer at pH 7.4. The adsorption of both proteins on the poly(MPC)-grafted surfaces was greatly reduced compared to the unmodified silicon. Adsorption decreased with increasing chain length of the poly(MPC) grafts. Grafts of chain length 200 (MW 59 000) gave adsorption levels of 7 and 2 ng/cm2, respectively, for fibrinogen and lysozyme at 1 mg/mL protein concentration, corresponding to reductions of greater than 98% compared to the unmodified silicon. Adsorption experiments using mixtures of the two proteins showed that the suppression of protein adsorption on the poly(MPC)-grafted surfaces was not strongly dependent on protein size or charge.  相似文献   

6.
Abstract

The grafting of poly(organophosphazenes) onto carbon black surface by the reaction of poly(dichlorophosphazene) (PDCP) with carbon black having sodium phenoxide groups was investigated. PDCP was prepared by the ring-opening polymerization of hexachlorocyclotriphos-phazene in solution using sulfamic acid as a catalyst. The introduction of sodium phenoxide groups onto carbon black was achieved by treatment of phenolic hydroxyl groups on the surface with sodium hydroxide in methanol. Poly(diphenoxyphosphazene) (PDPP) was successfully grafted onto carbon black by the reaction of PDCP with sodium phenoxide groups introduced onto the surface followed by the replacement of chlorine atoms in PDCP with phenoxy groups. The percentage of grafting onto carbon black increased to 206% at 30°C after 12 h. It was found that only 1.4% of sodium phenoxide groups on carbon black surface was used for the grafting of PDCP because of the blocking of the surface by grafted polymer chains. Poly(diaminophenylphosphazene) and poly-(diethoxyphosphazene) were also grafted onto carbon black surface by the treatment of PDCP-grafted carbon black with aniline and sodium ethoxide, respectively. Poly(organophosphazenes)-grafted carbon blacks produced stable colloidal dispersions in good solvents for grafted polymers. Furthermore, thermogravimetric analysis indicated that poly-(organophosphazenes)-grafted carbon blacks were stable in air about 300°C.  相似文献   

7.
This work describes studying the permanent grafting of carboxylic acid end-functionalized poly(ethylene glycol) methyl ether (PEG) chains of different molecular weights from the melt onto a surface employing poly(glycidyl methacrylate) ultrathin film as an anchoring layer. The grafting led to the synthesis of the complete PEG brushes possessing exceptionally high grafting density. The maximum thickness of the attached PEG films was strongly dependent on the length of the polymer chains being grafted. The maximum grafting efficiency was close to the critical entanglement molecular weight region for PEG. All grafted PEG layers were in the "brush regime", since the distance between grafting sites for the layers was lower than the end-to-end distance for the anchored macromolecules. Scanning probe microscopy revealed that the grafting process led to complete PEG layers with surface smoothness on a nanometric scale. Practically all samples were partly or fully covered with crystalline domains that disappeared when samples were scanned under water. Due to the PEG hydrophilic nature, the surface with the grafted layer exhibited a low (up to 21 degrees ) water contact angle.  相似文献   

8.
通过吸水率和接触角测定研究了聚N 异丙基丙烯酰胺 (PNIPAAm)接枝膜的温度敏感特性 .尽管非交联型接枝膜和交联型接枝膜的吸水特性没有显著差别 ,但是交联组分的引入确实在一定程度上延缓了接枝膜的失水趋势 ,同时也有利于接枝膜亲水性的提高 .对接枝膜进行接触角研究发现 ,在某临界温度以下 ,接触角随时间的变化表征了探测水滴与膜表面之间的相互作用过程 .为了消除接触角测定过程中水份蒸发造成的影响 ,建立了接触角修正算法和修正经验关系式 ,并发展了一种适合于温度敏感性接枝膜LCST测定的变温实时接触角测定方法 .提出了接枝膜与水滴相互作用过程分为两个阶段的模型 ,并得到交联型PP接枝膜表面性能发生明显变化的临界接枝率为 0 6mg cm2 左右  相似文献   

9.
Poly(chloro-p-xylylene) was synthesized in a manner similar to poly(p-xylylene) using Gorham's method at various cryogenic temperatures. The effect of the sublimation rate of dimer on the kinetics of deposition, crystallinity, and crystalline structure was studied. Increasing the sublimation rate of the dimer increases the deposition rate similar to that of poly(p-xylylene). However, an increase in crystallinity, in contrast to Parylene N, is observed, although, in general, Parylene C has lower crystallinity relative to Parylene N. No polymorphism is observed either by decreasing the deposition temperature or by increasing the sublimation rate of the dimer. Solution annealing and isothermal annealing both bring about crystallization without any structural transformation. Solution annealing removes the oligomers and dimers, but no crystalline oligomers are ever detected under the scanning electron microscope (SEM). The surface topology of films synthesized from ambient temperature to ?40°C is very similar to Parylene N. At lower temperatures, in the region ?50 to ?60°C, a rod-type morphology is observed similar to Parylene N. The surface topology of samples synthesized at ?196°C is totally different from that of Parylene N. All low temperature synthesized samples are amorphous.  相似文献   

10.
Four types of innovative benzophenone (BPh)‐ or aryl azide (ArAz)‐containing photoreactive polycarbazole (polyCbz)‐based microparticles (MPs) were prepared using an oxidative liquid phase polymerization system. Their photochemical reactivity was evaluated by their reaction with highly inert poly(2‐chloro‐paraxylelene) (Parylene C) films. Possible mechanisms for the photochemical reaction of those MPs with Parylene C were discussed. The highly photoreactive BPh was found to react more inside the particle causing internal cross‐linking of MP polyCbz chains, fusion between adjoining particles and deformation of their spherical structure. In contrast, the less reactive but more selective ArAz‐containing MPs were found to react much more with Parylene C. The strong reactivity of such photoreactive MPs toward Parylene C films emphasizes a general method for the functionalization of stable nonfunctional polymeric coatings. This paves the way to simple and solvent‐free functionalization of nonfunctional coatings and materials by light. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Abstract

Postpolymerization of vinyl monomers initiated by pendant peroxycarbonate groups of grafted polymer chains on carbon black (CB) was investigated. The grafting of polymers having pendant peroxycarbonate groups onto CB was achieved by the trapping of polymer radicals formed by the thermal decomposition of copolymers of t-butylperoxy-2-methacryloyloxyethyl-carbonate (HEPO) with vinyl monomers such as vinyl acetate (VAc), styrene (St) and methyl methacrylate (MMA). The copolymers having pendant peroxycarbonate groups were prepared by copolym-erization of HEPO with vinyl monomers using azo initiator under irradiation of UV light at room temperature. The amount of remaining pendant peroxycarbonate groups of the poly(VAc-co-HEPO)-grafted CB obtained from the reaction at 90°C was maximum and decreased above the temperature. Furthermore, the postpolymerization of vinyl monomers, such as St, MMA, and VAc was initiated in the presence of poly(VAc-co-HEPO)-grafted and poly(St-co-HEPO)-grafted CB and the corresponding polymers were postgrafted onto CB to give branched polymer-grafted CB. The percentage of poly(St)-postgrafting (proportion of post-grafted poly(St) to poly(MMA-co-HEPO)-grafted CB used) increased with increasing polymerization time, but became constant at 20% after 4 hours.  相似文献   

12.
2‐Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was grafted from silicon wafer surfaces at room temperature by combining self‐assembly of initiator and surface‐initiated atom transfer radical polymerization. Two methods were used to control the grafting process. One was to add free initiator to the reaction system; the other was to add excess deactivator. The grafting densities up to 0.3 chains/nm2 were obtained. The surface thickness increased linearly with MPC conversion. The thickness depended on catalyst and monomer concentrations, as well as activator/deactivator ratio. Poly(MPC) layers of >100 nm thick were obtained by optimizing the polymerization conditions. A second block of either poly(MPC) or poly[2‐(dimethylamino)ethyl methacrylate] was also grown from the grafted poly(MPC), demonstrating the system livingness. X‐ray photoelectron spectroscopy was used to examine the surface chemical compositions showed good agreement with the theoretical values. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2931–2942, 2004  相似文献   

13.
The grafting of 4-vinylpyridine (VP) onto styrene-butadiene-styrene triblock copolymer membrane (SBS) was induced by UV-radiation without degassing to obtain the SBS-g-VP copolymer membrane. The graft copolymer membrane was characterized by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM). The tensile strengths and elongations of dry and wet SBS-g-VP copolymer membranes were measured. The contact angle of dry and wet SBS-g-VP graft copolymer membranes with different amount of grafting were determined. By using Kaelble's equation and the contact angle data, the surface energy of dry and wet SBS-g-VP graft copolymer membranes were determined. The protein absorption of fibrinogen and albumin on the SBS-g-VP membranes were evaluated. It was found that the oxygen content in the SBS-g-VP copolymer membrane increased with increasing grafting degree which resulted from the UV photografting without degassing. The tensile strength of dry SBS-g-VP membrane increased with increasing degree of grafting but the elongation decreased. The tensile strengths and elongations of wet SBS-g-VP were significantly lower than those of SBS. The surface energy of dry and wet SBS-g-VP were determined by using Kaelble's equation and the contact angle data. It was found that the surface energy of SBS-g-VP membrane increased. The surface energy of wet SBS-g-VP was higher than that of dry SBS-g-VP. The absorption of albumin and fibrinogen decreased with increasing grafting degree and then levelled off.  相似文献   

14.
The tribological properties of Si3N4 ball sliding against diamond‐like carbon (DLC) films were investigated using a ball‐on‐disc tribometer under dry friction and oil lubrications, respectively. The influence of nano boron nitride particle as lubricant additive in poly‐α‐olefin (PAO) oil on the tribological properties of Si3N4/DLC films was evaluated. The microstructure of DLC films was measured by Raman spectroscopy and X‐ray photoelectron spectroscopy. The experimental results show coefficient of friction (COF) of Si3N4/DLC films was as low as 0.035 due to the formation of graphite‐like transfer films under dry friction condition. It also indicates that the tribological properties of Si3N4/DLC films were influenced significantly by the viscosity of oil and the content of nano boron nitride particle in PAO oil. COF increases with the viscosity of PAO oil increasing. Si3N4/DLC films exhibit the superlubricity behaviors (μ=0.001 and nonmeasurable wear) under PAO 6 oil with 1.0 wt% nano boron nitride particle lubrication, indicating that the improved boundary lubrication behaviors have indeed been responsible for the significantly reduced friction. Nano boron nitride additive is used as solid lubricant‐like nano scale ball bearing to the pointlike contact and a soft phase bond with the weak van der Waals interaction force on the contact surface to improve the lubrication behaviors of Si3N4/DLC films. The potential usefulness of nano boron nitride as lubricant additive in PAO oil for Si3N4/DLC films has been demonstrated under oil lubrication conditions. The present work will extend the wide application of nano particle additive and introduce a new approach to superlubricity under boundary lubrication in future technological areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Polysilanes with polyelectrolyte side chains are synthesized by two methods utilizing γ-ray-induced grafting and the pH responsiveness for one of those polymers is revealed mainly by investigating interfacial behavior of its monolayer at the air/water interface. In the first synthetic method, poly(methyl acrylate) is grafted onto poly(methyl-n-propylsilane) (PMPrS) through γ-ray-induced grafting, and then the PMA chains are hydrolyzed to poly(acrylic acid) resulting in the yield of ca. 97%. Thus PMPrS with polyelectrolyte side chains is successfully synthesized by the graft chain hydrolysis. The other method is the direct grafting of electrolyte monomers. Poly(methacrylic acid)-grafted PMPrS (PMPrS-g-PMAA) can be obtained through γ-ray-induced grafting of methacrylic acid monomers onto PMPrS chains, which shows the effectiveness of radiation grafting for the synthesis of polyelectrolyte graft copolymers. PMPrS-g-PMAA exhibits pH responsive behavior. In addition to the pH-dependence of water solubility, interfacial behavior also depends on the pH. Langmuir monolayers of PMPrS-g-PMAA exhibit different surface pressure-area isotherms according to the grafting yield and the pH of the subphase water. This result suggests that radiation modification is useful for fabricating polysilane-based ordered materials responsive to outer stimuli.  相似文献   

16.
This paper reports our investigation regarding the thermal properties of new polymer-silica hybrid materials obtained by radiation grafting. The polymer poly(dimethylsiloxane),bis(3-aminopropyl)terminated is γ-grafted on a silica gel surface. The thermal behaviour of γ-grafted hybrid materials reveals remarkable differences compared to the thermal behaviour of physically adsorbed polymers. These differences allow us to assess the ability of γ-rays to produce a polymer chemically bonded on a silica surface. The chemical bonds formed by irradiation give to the polymer a high conformational stability confirmed by DTA analysis.  相似文献   

17.
Thermoresponsive poly(N-isopropylacrylamide) (P(NIPAAm))-grafted polycaprolactone (PCL) films with a suitable amount of immobilized cell-adhesive collagen were prepared to improve cell adhesion and proliferation above the lower critical solution temperature (LCST, 32°C) of P(NIPAAm) without destroying cell detachment properties at lower temperatures. Covalently tethered P(NIPAAm) brushes on PCL film surfaces were first prepared via surface-initiated atom transfer radical polymerization (ATRP). The alkyl bromide end groups of the grafted P(NIPAAm) brushes were used in nucleophilic substitution reactions for the direct coupling of collagen to produce the collagen-immobilized thermoresponsive PCL surface. At 37°C, the cell attachments on the collagen-immobilized thermoresponsive PCL surface were enhanced substantially. The attached cells could be recovered simply by lowering culture temperature. The P(NIPAAm)-grafted PCL films with immobilized collagen are potentially useful as adhesion modifiers for advanced cell culture and tissue engineering applications.  相似文献   

18.
In this work, solventless grafting of NVP on to LDPE surface was conducted by high-energy electron beam radiation (10 MeV) at dose range 10–200 kGy in absence of solvent. As NVP could not wet LDPE surface, polyvinylpyrrolidone (PVP) (with various k-values and thus various weight percentages) was solved in NVP and then this tacky polymer was used for coating and grafting purposes. The FT–IR spectra showed that the concentration of characteristic bands of the NVP -grafted LDPE increased with increasing radiation dose as well as the percentage of grafting significantly increased up to 32%. Furthermore, hydrophilicity, yield of gel content and topology of NVP-grafted LDPE films and sheets were studied.  相似文献   

19.
Surface-tethered bottlebrushes have been prepared by ATRP grafting of the macroinitiator brush backbone onto plasmachemical-deposited poly(vinylbenzyl chloride) initiator nanofilms followed by ATRP growth of the side chains (bristles). The surface density of bottlebrushes can be precisely tailored by varying the plasmachemical deposition parameters employed for producing the poly(vinylbenzyl chloride) initiator nanolayers. Lateral force scanning probe microscopy has shown that poly(glycidyl methacrylate)-graft-poly(sodium styrene sulfonate) bottlebrush-decorated surfaces give rise to an enhancement in lubrication.  相似文献   

20.
聚乙烯综合性能优良且价格低廉,但由于较低的表面能和惰性化学结构,其着色性、生物相容性及制品表面涂饰性能差,与各种涂饰剂的粘结强度很低,限制了其用途的拓展,须进行表面改性.聚乙烯制品的表面改性方法已有不少研究报道[1~4],相对而言,采用添加表面改性剂的方法在工艺上仍最  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号