首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new branch of fatty acid metabolism has been opened by the novel phosphatase activity found in the N-terminal domain of the, hence bifunctional, soluble epoxide hydrolase (sEH). Importantly, this finding has also provided a new site for drug targeting in sEH's activity regulation. Classical MD and hybrid Car-Parrinello QM/MM calculations have been performed to investigate the reaction mechanism of the phosphoenzyme intermediate formation in the first step of the catalysis. The results support a concerted multi-event reaction mechanism: (1) a dissociative in-line nucleophilic substitution for the phosphoryl transfer reaction; (2) a double proton transfer involved in the formation of a good leaving group in the transition state. The presence of a water bridge in the substrate/enzyme complex allowed an efficient proton shuttle, showing its key role in speeding up the catalysis. The calculated free energy of the favored catalytic pathway is approximately 19 kcal/mol, in excellent agreement with experimental data.  相似文献   

2.
We here present a theoretical study of the alkaline hydrolysis of a phosphodiester (methyl p-nitrophenyl phosphate or MpNPP) in the active site of Escherichia coli alkaline phosphatase (AP), a monoesterase that also presents promiscuous activity as a diesterase. The analysis of our simulations, carried out by means of molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials, shows that the reaction takes place through a D(N)A(N) or dissociative mechanism, the same mechanism employed by AP in the hydrolysis of monoesters. The promiscuous activity observed in this superfamily can be then explained on the basis of a conserved reaction mechanism. According to our simulations the specialization in the hydrolysis of phosphomonoesters or phosphodiesters, developed in different members of the superfamily, is a consequence of the interactions established between the protein and the oxygen atoms of the phosphate group and, in particular, with the oxygen atom that bears the additional alkyl group when the substrate is a diester. A water molecule, belonging to the coordination shell of the Mg(2+) ion, and residue Lys328 seem to play decisive roles stabilizing a phosphomonoester substrate, but the latter contributes to increase the energy barrier for the hydrolysis of phosphodiesters. Then, mutations affecting the nature or positioning of Lys328 lead to an increased diesterase activity in AP. Finally, the capacity of this enzymatic family to catalyze the reaction of phosphoesters having different leaving groups, or substrate promiscuity, is explained by the ability of the enzyme to stabilize different charge distributions in the leaving group using different interactions involving either one of the zinc centers or residues placed on the outer side of the catalytic site.  相似文献   

3.
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, controlling phospholipids and triacylglycerol metabolisms. Pah1 and human Lipin 1 are intrinsically disordered proteins with 56% and 43% unfolded regions, respectively. Truncation analysis of the conserved and non-conserved regions showed that N- and C-conserved regions are essential for the catalytic activity of Pah1. PAP activities can be detected in the conserved N-terminal Lipin (NLIP) domain and C-terminal Lipin (CLIP)/haloacid dehalogenase (HAD)-like domain of Pah1 and Lipin 1, suggesting that the evolutionarily conserved domains are essential for the catalytic activity. The removal of disordered hydrophilic regions drastically reduced the protein solubility of Pah1. Thioredoxin is an efficient fusion protein for production of soluble NLIP–HAD recombinant proteins in Escherichia coli.  相似文献   

4.
A wide range of organophosphorus nerve agents, including Soman, Sarin, and Tabun is efficiently hydrolyzed by the phosphotriesterase enzyme diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris. To date, the lack of available inhibitors of DFPase has limited studies on its mechanism. The de novo design, synthesis, and characterization of substrate analogues acting as competitive inhibitors of DFPase are reported. The 1.73 A crystal structure of O,O-dicyclopentylphosphoroamidate (DcPPA) bound to DFPase shows a direct coordination of the phosphoryl oxygen by the catalytic calcium ion. The binding mode of this substrate analogue suggests a crucial role for electrostatics in the orientation of the ligand in the active site. This interpretation is further supported by the crystal structures of double mutants D229N/N120D and D229N/N175D, designed to reorient the electrostatic environment around the catalytic calcium. The structures show no differences in their calcium coordinating environment, although they are enzymatically inactive. Additional double mutants E21Q/N120D and E21Q/N175D are also inactive. On the basis of these crystal structures and kinetic and mutagenesis data as well as isotope labeling we propose a new mechanism for DFPase activity. Calcium coordinating residue D229, in concert with direct substrate activation by the metal ion, renders the phosphorus atom of the substrate susceptible for attack of water, through generation of a phosphoenzyme intermediate. Our proposed mechanism may be applicable to the structurally related enzyme paraoxonase (PON), a component of high-density lipoprotein (HDL).  相似文献   

5.
The cyclic nucleotide phosphodiesterase superfamily of enzymes (PDEs) catalyzes the stereospecific hydrolysis of the second messengers adenosine and guanosine 3',5'- cyclic monophosphate (cAMP, cGMP) to produce 5'-AMP and 5'-GMP, respectively. The PDEs are targets of high-throughput screening to determine selective inhibitors for a variety of therapeutic purposes. The catalytic pocket where the hydrolysis takes place is a highly conserved region and has several residues which are absolutely conserved across the PDE families. In this study, we consider a model cyclic substrate in which the adenine/guanine base has been replaced with a hydrogen atom, and we present results of a quantum computational investigation of the hydrolysis reaction as it occurs within the PDE catalytic site using the ONIOM hybrid (B3LYP/6-31g(d):PM3) method. We characterize the bound substrate, the bound hydrolyzed product, and the transition state which connects them for our model cyclic substrate placed in a truncated model of the PDE4D2 catalytic site. We address the role that the conserved histidine proximal to the bimetal system of the catalytic site, along with its conserved glutamine partner, plays in the generation of the hydroxide nucleophile. Our study provides computational evidence for several key features of the cAMP/cGMP hydrolysis mechanism as it occurs within the protein environment across the PDE superfamily.  相似文献   

6.
Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head group interactions dominate the selectivity as well as a substantial part of the affinity. Theab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional “pseudo-triad” mechanism, the “Ca-coordinated-oxyanion” mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised.  相似文献   

7.
The complete reaction mechanism of soluble epoxide hydrolase (sEH) has been investigated by using the B3LYP density functional theory method. Epoxide hydrolases catalyze the conversion of epoxides to their corresponding vicinal diols. In our theoretical study, the sEH active site is represented by quantum-chemical models that are based on the X-ray crystal structure of human soluble epoxide hydrolase. The trans-substituted epoxide (1S,2S)-beta-methylstyrene oxide has been used as a substrate in the theoretical investigation of the sEH reaction mechanism. Both the alkylation and the hydrolytic half-reactions have been studied in detail. We present the energetics of the reaction mechanism as well as the optimized intermediates and transition-state structures. Full potential energy curves for the reactions involving nucleophilic attack at either the benzylic or the homo-benzylic carbon atom of (1S,2S)-beta-methylstyrene oxide have been computed. The regioselectivity of epoxide opening has been addressed for the two substrates (1S,2S)-beta-methylstyrene oxide and (S)-styrene oxide.  相似文献   

8.
Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35?? resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.  相似文献   

9.
Protein tyrosine phosphatase 1B (PTP1B) functions by removing the phosphoryl group from tyrosinephosphorylated proteins in insulin signaling and metabolism. The regeneration of the active site involves a sulphenylamide intermediate derived from the intrastrand cross-linking between the catalytic serine and the neighboring backbone nitrogen. Two mechanisms have been proposed for the formation of the sulphenylamide intermediate and the subsequent reactivation of the catalytic site. In the current work, the proposed mechanisms have been investigated by the use of density functional theory calculations. Our results suggest that these two mechanisms have similar overall energy barriers and that the preferred route will be determined by the availability of hydrogen peroxide or other oxidizing reagents.  相似文献   

10.
Delta(5)-3-Ketosteroid Isomerase (KSI) catalyzes the isomerization of 5,6-unsaturated ketosteroids to their 4,5-unsaturated isomers at a rate approaching the diffusion limit. The isomerization reaction follows a two-step general acid-base mechanism starting with Asp38-CO(2)(-) mediated proton abstraction from a sp(3)-hybridized carbon atom, alpha to carbonyl group, providing a dienolate intermediate. In the second step, Asp38-CO(2)H protonates the C6 of the intermediate providing a 4,5-unsaturated ketosteroid. The details of the mechanism have been highly controversial despite several experimental and computational studies of this enzyme. The general acid-base catalysis has been proposed to involve either a catalytic diad or a cooperative hydrogen bond mechanism. In this paper, we report our results from the 1.5 nanosecond molecular dynamics (MD) simulation of enzyme bound natural substrate (E.S) and enzyme bound intermediate (E.In) solvated in a TIP3P water box. The final coordinates from our MD simulation strongly support the cooperative hydrogen bond mechanism. The MD simulation of E.S and E.In shows that both Tyr14 and Asp99 are hydrogen bonded to the O3 of the substrate or intermediate. The average hydrogen bonding distance between Tyr14-OH and O3 becomes shorter and exhibits less fluctuation on E.S --> E.In. We also observe dynamic motions of water moving in and out of the active site in the E.S structures. This free movement of water disappears in the E.In structures. The active site is shielded by hydrophobic residues, which come together and squeeze out the waters from the active site in the E.In complex.  相似文献   

11.
Many enzymes in the pentein superfamily use a transient covalent intermediate in their catalytic mechanisms. Here we trap and determine the structure of a stable covalent adduct that mimics this intermediate using a mutant dimethylarginine dimethylaminohydrolase and an alternative substrate. The interactions observed between the enzyme and trapped adduct suggest an altered angle of attack between the nucleophiles of the first and second half-reactions of normal catalysis. The stable covalent adduct is also capable of further reaction. Addition of imidazole rescues the original hydrolytic activity. Notably, addition of other amines instead yields substituted arginine products, which arise from partitioning of the intermediate into the evolutionarily related amidinotransferase reaction pathway. The enzyme provides both selectivity and catalysis for the amidinotransferase reaction, underscoring commonalities among the reaction pathways in this mechanistically diverse enzyme superfamily. The promiscuous partitioning of this intermediate may also help to illuminate the evolutionary history of these enzymes.  相似文献   

12.
13.
We present the results of the first theoretical investigation of salen-manganese complexes as synthetic catalytic scavengers of hydrogen peroxide molecules that mimic catalase enzymes. Catalase mimics can be used as therapeutic agents against oxidative stress in treatment of many diseases, including Alzheimer's disease, stroke, heart disease, aging, and cancer. A ping-pong mechanism approach has been considered to describe the H2O2 dismutation reaction. The real compounds reacting with a peroxide molecule were utilized in our BP density functional calculations to avoid uncertainties connected with using incomplete models. Part I of the dismutation reaction-converting a peroxide molecule into a water molecule with simultaneous oxidation of the metal atom of the catalyst-can be done quite effectively at the Mn catalytic center. To act as catalytic scavengers of hydrogen peroxide, the oxomanganese salen complexes have to be deoxidized during part II of the dismutation reaction. It has been shown that there are two possible reaction routes for the second part of the dismutation reaction: the top and the side substrate approach routes. Our results suggest that the catalyst could be at least temporarily deactivated (poisoned) in the side approach reaction route due to the formation of a kinetically stable intermediate. Overall, the side approach reaction route for the catalyst recovery is the bottleneck for the whole dismutation process. On the basis of the detailed knowledge of the mode of action of the (salen)MnIII catalase mimics, we suggest and rationalize structural changes of the catalyst that should lead to better therapeutic properties. The available experimental data support our conclusions. Our findings on the reaction dismutation mechanism could be the starting point for further improvement of salen-manganese complexes as synthetic catalytic scavengers of reactive oxygen species.  相似文献   

14.
In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6–N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.  相似文献   

15.
Dehalogenases catalyze the cleavage of the carbon-halogen bond of organohalogen compounds. They have been attracting a great deal of attention partly because of their potential applications in the chemical industry and bioremediation. In this personal account, we describe occurrences, reaction mechanisms, and applications of bacterial hydrolytic dehalogenases and related enzymes, particularly L-2-haloacid dehalogenase, DL-2-haloacid dehalogenase, fluoroacetate dehalogenase, and 2-haloacrylate reductase. L-2-Haloacid dehalogenase is a representative enzyme of the haloacid dehalogenase (HAD) superfamily, which includes the P-type ATPases and other hydrolases. Structural and mechanistic analyses of this enzyme have yielded important insights into the mode of action of the HAD superfamily proteins. Fluoroacetate dehalogenase is unique in that it catalyzes the cleavage of the highly stable C--F bond of a fluorinated aliphatic compound. In the reactions of L-2-haloacid dehalogenase and fluoroacetate dehalogenase, the carboxylate group of Asp performs a nucleophilic attack on the alpha-carbon atom of the substrate, displacing the halogen atom. This mechanism is common to haloalkane dehalogenase and 4-chlorobenzoyl-CoA dehalogenase. DL-2-Haloacid dehalogenase is unique in that a water molecule directly attacks the substrate, displacing the halogen atom. The occurrence of 2-haloacrylate reductase was recently reported, revealing a new pathway for the degradation of unsaturated aliphatic organohalogen compounds.  相似文献   

16.

The mechanisms of human soluble epoxide hydrolase (sEH) and the corresponding epoxide hydrolase enzyme from Mycobacterium tuberculosis (EHB) are studied computationally, using the quantum mechanics/molecular mechanics (QM/MM) method. To do this, we modeled the alkylation and the hydrolysis steps of three substrates: trans-1,3-diphenylpropene oxide, trans-stilbene oxide and cis-stilbene oxide. Studying the regioselectivity for trans-1,3-diphenylpropene oxide, we determined that both enzymes prefer ring opening via attack on the benzylic carbon. In agreement with experimental studies, our computations show that the rate-limiting step is hydrolysis of the ester intermediate, with reaction barriers of approximately 13 to 18 kcal/mol. Using the barrier energies of this rate-limiting step, the three epoxides were ranked in order of reactivity. Though the reactivity order was correctly predicted for sEH, the predicted order for EHB did not correspond to experimental observations. Next, the electrostatic contributions of individual residues on the barrier height of the rate-limiting step were also studied. This revealed several residues important for catalysis. The secondary tritium kinetic isotope effect for the alkylation step was determined using a cluster model for the active site of sEH. The calculated value was 1.27, suggesting a late transition state for the rate-limiting step. Finally, we analyzed the reactivity trends using reactivity indicators from conceptual density functional theory, allowing us to identify ease of electron transfer as the primary driving force for the reaction.

  相似文献   

17.
Human tyrosylprotein sulfotransferases catalyze the transfer of a sulfuryl moiety from the universal sulfate donor PAPS to the hydroxyl substituent of tyrosine residues in proteins and peptides to yield tyrosine sulfated products and PAP. Tyrosine sulfation occurs in the trans-Golgi network, affecting an estimated 1% of the tyrosine residues in all secreted and membrane-bound proteins in higher order eukaryotes. In this study, an effective LC-MS-based TPST kinetics assay was developed and utilized to measure the kinetic properties of human TPST-2 and investigate its catalytic mechanism when G protein-coupled CC-chemokine receptor 8 (CCR8) peptides were used as acceptor substrates. Through initial rate kinetics, product inhibition studies, and radioactive-labeling experiments, our data strongly suggest a two-site ping-pong model for TPST-2 action. In this mechanistic model, the enzyme allows independent binding of substrates to two distinct sites, and involves the formation of a sulfated enzyme covalent intermediate. Some insights on the important amino acid residues at the catalytic site of TPST-2 and its covalent intermediate are also presented. To our knowledge, this is the first detailed study of the reaction kinetics and mechanism reported for human TPST-2 or any other Golgi-resident sulfotransferase.  相似文献   

18.
《Tetrahedron: Asymmetry》2000,11(22):4451-4462
The regio- and enantioselective hydrolysis of several phenyloxiranes catalyzed by soluble epoxide hydrolase (sEH) was investigated using recombinant human, mouse or cress sEH. Results indicate that human and mouse sEH enantioselectively hydrolyze (S,S)-alkyl-phenyloxiranes faster than the (R,R)-alkyl-phenyloxiranes investigated in this study, while cress sEH displayed opposite enantioselectivity. Preparation of pure (2R,3R)-3-phenylglycidol from the racemic mixture was achieved with a 31% yield using human sEH as catalyst. The sEH enzymes were found to be regioselective at the benzylic carbon of the phenyloxiranes, supporting the proposed mechanism in which one or more tyrosine residues in the active site of the enzyme act as a general acid catalyst in the alkylation half reaction.  相似文献   

19.
Molecular dynamics simulations have been performed to gain insights into the catalytic mechanism of the hydrolysis of epoxides to vicinal diols by soluble epoxide hydrolase (sEH). The binding of a substrate, 1S,2S-trans-methylstyrene oxide, was studied in two conformations in the active site of the enzyme. It was found that only one is likely to be found in the active enzyme. In the preferred conformation the phenyl group of the substrate is pi-sandwiched between two aromatic residues, Tyr381 and His523, whereas the other conformation is pi-stacked with only one aromatic residue, Trp334. Two simulations were carried out to 1 ns for each conformation to evaluate the protonation state of active site residue His523. It was found that a protonated histidine is essential for keeping the active site from being disrupted. Long time scale, 4 ns, molecular dynamics simulation was done for the structure with the most likely combination of binding conformation and protonation state of His523. Near Attack Conformers (NACs) are present 5.3% of the time and nucleophilic attack on either epoxide carbon atom, approximately 75% on C(1) and approximately 25% on C(2), is found. A maximum of one hydrogen bond between the epoxide oxygen and either of the active site tyrosines, Tyr465 and Tyr381, is present, in agreement with experimental mutagenesis results that reveal a slight loss in activity if one tyrosine is mutated and essential loss of all activity upon double mutation of the two tyrosines in question. It was found that a hydrogen bond from Tyr465 to the substrate oxygen is essential for controlling the regioselectivity of the reaction. Furthermore, a relationship between the presence of this hydrogen bond and the separation of reactants was found. Two groups of amino acid segments were identified each as moving collectively. Furthermore, an overall anti-correlation was found between the movements of these two individually collectively moving groups, made up by parts of the cap-region, including the two tyrosines, and the site of the catalytic triad, respectively. This overall anti-correlated collective domain motion is, perhaps, involved in the conversion of E.NAC to E.TS.  相似文献   

20.
3-Hydroxyisobutyryl-CoA hydrolase (HICH), a member of the enoyl-CoA (crotonase) superfamily, catalyzes the hydrolysis of 3-hydroxyisobutyryl-CoA to 3-hydroxyisobutyrate. Like other members of the superfamily, the sequence of HICH contains conserved sequences for an oxyanion hole that stabilizes anionic intermediates. In contrast to most members of the superfamily, the reaction catalyzed by HICH does not proceed via formation of a thioester enolate anion; instead, evidence based on substrate deuterium isotope effects, the reactivity of substrate analogues that cannot form thioester enolate anions, single-turnover experiments in H218O, and the kinetic phenotypes of site-directed mutants provide evidence for a mechanism involving the formation of an anhydride intermediate involving Glu143 in the active site. In the reactions catalyzed by many members of the superfamily, homologues of Glu143 abstract the alpha proton of the thioester substrate to generate the thioester enolate anion intermediate. Presumably, one or more of the anionic tetrahedral intermediates on the HICH reaction coordinate are stabilized by the oxyanion hole. Thus, we conclude that the conserved oxyanion hole in this superfamily can be used to stabilize a variety of anionic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号