首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
The use of steel-making slag as catalysts for microwave-assisted dry reforming of CH4 was studied. Two carbon materials (an activated carbon and a metallurgical coke), mixtures of the carbon materials and Fe-rich slag, and mixtures of the carbon materials and Ni/Al2O3 were tested as catalysts. The mixtures of slag with carbons gave rise to higher and steadier conversions than those achieved over the carbon materials alone. In addition, the use of the metallurgical coke mixed with metal-rich catalysts gave rise to remarkable results. Thus, no CH4 and CO2 conversions were achieved when coke was used alone, whereas high conversions were obtained when it was mixed with the metal-rich catalysts.  相似文献   

2.
碳化镍钼催化剂的制备及其甲烷干气重整活性(英文)   总被引:1,自引:0,他引:1  
Nickel molybdenum carbide catalysts were prepared and their activities in the CO2 reforming of methane at a low CO2/CH4 reactant ratio were investigated using a microreactor at atmospheric pressure and at 973 K.The effect of the catalyst preparation method and the Ni/Mo ratio on the increase in catalyst life and the promotion of catalytic activity were investigated using N2 adsorption,X-ray diffraction, temperature-programmed carburization,temperature-programmed reaction,and a reforming reaction.The 25Ni75Mo catalyst that was carburized at 813 K exhibited the highest hydrogen formation ability and gave the least carbon deposition.The incomplete carburization of the Mo oxide species in the catalyst that was carburized at a lower temperature gradually gave a more active carburized species.The NiMoOxCy in the catalyst was more active in hydrogen formation during the dry reforming of methane whileβ-Mo2C andη-Mo3C2 were less active.  相似文献   

3.
The deactivation of nickel catalysts used in Arak and Razi petrochemical complexes followed by catalyst regeneration was evalu-ated. The characterization of the different structures was made by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM),and carbon & sulfur analyzer. The Ni particle size was estimated from XRD patterns and TEM graphs. The agglomeration of nickel particle and the poison by sulfur components were recognized as the main reasons in deactivation of Arak and Razi catalysts,respectively. The activity of the used catalysts before and after regeneration was measured on methane steam reforming at a CH4:H2O ratio of 1:3 at 850 oC. The regeneration processes for Arak and Razi samples were performed with CO2 as an oxidative atmosphere and steam as a regenerating agent,respectively. The results show that,(1) no residual sulfur components were on the regenerated Razi catalyst surface without changing the structure of the catalyst and the regenerated catalyst has gained 80% of its catalytic activity,and that(2) the nickel particle size of regenerated Arak specimen decreased remarkably as measured by Debye-Scherrer equation from XRD patterns. TEM images were in agreement with the XRD results and indicated a decrease in nickel particle size of regenerated catalyst. Additionally,in both regenerated catalysts all the coke on the surface of the support was eliminated after regeneration.  相似文献   

4.
The uses of methane, the major component in natural gas, have been investigated by many research groups throughout the world. A number of catalysts, single or binary, have been proposed for the oxidative coupling of CH4 with CO2 as the oxidant[1~6]. Binary metal-oxide catalysts, such as La2O3-ZnO and CaO-ZnO, showed higher C2 hydrocarbon selectivity (>80%) with low CH4 conversion (<6%) at high temperatures (750~850 ℃)[7~9].  相似文献   

5.
Dehydrogenation and aromatization of methane over Mo/HZSM-5 catalyst without adding oxygen were widely studied[1~3]. However, the existing problem of this route is the low yield of aromatics, owing to the high stability of methane. Recently, the introduction of the second metal species was believed to be a promising route to improve non-oxidative transformation of methane over Mo/HZSM-5 catalyst[4-7].  相似文献   

6.
Intrinsic data of N2O catalytic decomposition over a K-promoted Co-Mn-Al mixed oxide prepared by the thermal treatment of a layered double hydroxide was used for the design of a pilot reactor for the abatement of N2O emissions from the off-gases in HNO3 production.A pseudo-homogeneous one-dimensional model of an ideal plug flow reactor under an isothermal regime(450°C)was used for reactor design.A catalyst particle diameter of 3 mm is a compromise size because increasing the size of the catalyst particle leads to a decrease in the reaction rate because of an internal diffusion limitation,and particles with a smaller diameter cause a large pressure drop.A catalyst bed of 11.5 m 3 was estimated for the target N2O conversion of 90%upon the treatment of 30000 m 3 /h of exhaust gas(0.1 mol%N2O,0.005 mol% NO,0.9 mol%H2O,5 mol%O2)at 450°C and 130 kPa.  相似文献   

7.
Nickel catalysts are effective for the steam reforming of tar derived from biomass pyrolysis,but the improvement is needed in terms of activity,stability,suppression of coke deposition and aggregation,and regeneration.Our recent development of Ni-based catalysts for the steam reforming of tar is reviewed including the modification with CeO2(or MnO),trace Pt,and MgO.The role of additives such as CeO2,MnO,Pt,and MgO is also discussed.  相似文献   

8.
甲烷二氧化碳重整反应不仅可以将两种温室气体转化为更具有工业应用价值的合成气,而且反应产物中的H_2/CO比也比较适宜合成气的深加工过程,兼具环境效益和经济效益,因此受到广泛的关注与研究.但是,阻碍该过程工业化的主要问题在于反应中Ni基催化剂非常容易积碳,从而导致催化剂失活.近年来,甲烷二氧化碳催化重整领域的研究主要集中在反应机理和催化剂设计,其中大多数的研究结果表明,Ni基催化剂的抗积碳性能取决于反应过程中积碳速率与消碳速率之间的平衡.CO_2是该反应体系中唯一的氧源,因此Ni基催化剂的消碳能力在很大程度上取决于其对CO_2裂解活化能力的强弱.早期的文献中一般认为,CO_2的裂解活化与载体的Lewis碱性位点强弱相关,因此添加碱性氧化物助剂,比如MgO和CaO等,能够增强Ni基催化剂的碱性强度和CO_2吸附性能,有利于催化剂表面碳物种的转化,从而增强催化剂的稳定性.已有文献报道,添加微量MgO助剂(1 wt%)尽管没有影响Ni基催化剂的碱性强度,但是能够明显增强Ni基催化剂的稳定性,但没有对此结果给出明确的解释.在非均相催化研究领域中,活性金属与助剂在催化剂表面的分散性,是研究其催化作用的重要前提.大部分甲烷二氧化碳催化重整研究工作中,助剂的引入通常采用浸渍法,但是这种制备方法并不能有效保证助剂的分散度.本研究工作利用了水滑石材料的"记忆效应",将0.42 wt%Mg~(2+)引入到由Ni-Al水滑石前驱体焙烧后得到的Ni/Al_2O_3催化剂中.X射线能谱仪的结果表明,微量MgO助剂均匀分散在Ni/Al_2O_3催化剂表面上.经X射线衍射、CO_2程序升温脱附和H_2程序升温还原表征验证,添加微量的MgO助剂并没有对Ni晶粒尺寸、金属载体相互作用以及Al_2O_3载体表面碱性强度产生明显作用;然而甲烷二氧化碳重整活性评价测试和反应后催化剂的O2程序升温氧化实验结果显示,微量MgO助剂能明显增强Ni/Al_2O_3催化剂的稳定性,并且有效地阻碍了石墨碳在催化剂表面的形成.表面脉冲吸附实验结果证实,微量MgO助剂促进了CO_2在Ni颗粒表面的裂解活化,进而可以及时消除Ni金属表面由甲烷裂解产生的碳物种,防止其迁移、聚集和生成石墨碳.  相似文献   

9.
合成二甲醚铜基/HZSM5催化剂的研究制备条件和反应条件对催化剂活性的影响李增喜冯玉龙王日杰张继炎(天津大学化工系,天津300072)王延吉(河北工业大学化工系,天津300130)韩森(天津大学C1化工国家重点实验室,天津300072)关键词...  相似文献   

10.
加压下甲烷和二氧化碳与水蒸汽重整催化剂的稳定性   总被引:4,自引:0,他引:4  
甲烷与二氧化碳反应可制备低H。/CO比的合成气,这种含CO高的合成气在斯基合成中作用广泛.由于本反应是消除对环境有害的CO。的重要反应,目前已成为热点课题之一.我们在研究常压下该反应最佳条件及催化剂的抗结炭性能及稳定性的基本上【‘-“,研制了适应于加压反应的MCryZ催化剂.在模拟甲烷水蒸汽重整的工业单管实验条件的变温床中,串装工业用环状催化剂,考查了催化剂性能随反应时间的变化,并进行了稳定性实验.MCryZ催化剂为烧结型,载体主要为a-AI。O。浸渍质量分数为15%~17%的NIO,形状为拉西环,外径14rum,内径6…  相似文献   

11.
Sm修饰的Ni-MgO催化剂制备碳纳米管的研究   总被引:2,自引:0,他引:2  
李克  吕功煊  刘建福 《无机化学学报》2005,21(10):1571-1575
Carbon nanotubes (CNTs) have been synthesized over Ni-MgO and Ni-Sm-MgO catalysts by decomposition of CH4 at 650 ℃. The addition of Sm into Ni-MgO catalyst not only promotes the catalytic activity and lifetime of the catalyst, but also improves the graphitization and heat stability of carbon nanotubes. The yield of CNTs obtained over the Ni-10Sm-MgO catalyst reaches 33 g C·(g Ni)-1, being more than 5 times higher than that of the Ni-MgO catalyst. XRD and TPR results of the catalysts indicate that there is a remarkable interaction of Ni with Sm species, which facilitates the reduction of nickel and restrains the Ni particles from agglomerating.  相似文献   

12.
Decomposition of methane in the presence of coprecipitated nickel-based catalysts to produce carbon fibers was investigated. The reaction was studied in the temperature range of 773 K to 1073 K. At 1023 K, the catalytic activities of three catalysts kept high at the initial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Al catalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fibers was very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those for Ni-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to 1073 K led gradually to an increase in the yield of carbon fibers. XRD studies on the Ni-La-Al catalyst indicate that La2NiO4 was formed. The formation of La2NiO4 is responsible for the increase in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at 773 1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There are bamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Al catalyst have large hollow core, thin wall and good graphitization.  相似文献   

13.
Direct decomposition of methane was carried out using a fixed-bed reactor at 700℃for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated. The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiO2 support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2 (w/w) since the highest yield of hydrogen was obtained over this catalyst.  相似文献   

14.
采用浸渍法制备了Ni/MgO与Ni/O-D(氧化金刚石)催化剂,分别研究了反应温度和空速对甲烷催化裂解转化率的影响,并利用XPS、SEM、EDS等测试技术对催化剂进行了表征. 结果表明,33Ni/O-D和41Ni/MgO分别在500与650 ℃能长时间维持其催化活性,前者在150 min内的甲烷转化率>8%,后者则在120 min内的甲烷转化率>25%;甲烷初始转化率随裂解反应温度升高而增大,但温度过高导致催化剂迅速失活;降低空速有利于提高甲烷的转化率,但却会降低氢气产量;甲烷裂解生成的碳产物形貌取决于载体和催化反应条件,较低温度(500和550 ℃)下,Ni/O-D表面的裂解碳呈现出纤维状,在650 ℃以上则表现为板结颗粒堆积并将Ni完全覆盖,但该温度下的Ni/MgO表面仍能形成碳纤维,并随空速降低存在直径增加的趋势.  相似文献   

15.
The promotion effects of nickel catalyst of dry reforming with methane were extensively investigated by means of XRD, SEM, EDX, N2‐adsorption and H2‐adsorption. XRD characterization indicated that good dispersion of nickel oxide and MgO promoter is achieved over γ‐Al2O3 support. Addition of MgO promoter effectively retards the formation of NiAl2O4 phase. SEM and EDX analysis exhibited that the addition of rare‐earth metal oxide CeO2 effectively promotes the Ni metal dispersion on the surface of the catalysts despite of undesirable self‐dispersion of CeO2 promoter. Furthermore, the nickel component is gradually dispersed on the surface of the support following the exposure to reaction gas mixture for a period of time. The addition of MgO inhibited the self‐dispersion and promotion effect of CeO2 on Ni dispersion on the catalysts. H2 chemisorption revealed that the addition of the alkaline oxide MgO promoter significantly prohibits the metal dispersion on the catalyst. Inappropriate promoter addition can result in sharp decrease of the metal dispersion, N2‐adsorption indicated that oxide promoter was mostly concentrated on the outer layer of the alumina support while the nickel metal was generally dispersed in the support pores. Addition of promoters contributed to more reduction in mesopore volume.  相似文献   

16.
 分别采用硝酸钴、醋酸钴、硫酸钴和氯化钴为前驱体制备了Co/SiO2催化剂,用XRD,TPR,SEM和H2-TPD等实验技术考察了钴盐前驱体对催化剂结构和二氧化碳重整甲烷反应性能的影响,重点考察了硝酸钴和醋酸钴的作用.结果表明,由醋酸钴制备的Co/SiO2催化剂有最佳的催化活性和稳定性,它在钴物种的存在状态、金属-载体相互作用、钴金属晶粒度及抗烧结、抗积炭能力等方面,均与由硝酸钴制备的Co/SiO2催化剂存在显著的差别.Co/SiO2催化剂的反应活性和稳定性分别与其金属分散度和抗烧结、抗积炭能力密切相关.  相似文献   

17.
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.  相似文献   

18.
对于甲烷重整反应,Ni基催化剂具有与贵金属催化剂相当的活性,但其易于积炭失活.本文总结了辉光放电等离子体处理制备CO2甲烷重整Ni催化剂以提高催化剂抗积炭性能的研究进展.比较表明,辉光放电等离子体处理制备的Ni催化剂,Ni颗粒较小,分散性更好,密集平面增加,且Ni活性组分与载体相互作用加强.这些变化导致Ni催化剂抗积炭性能改善.  相似文献   

19.
Ni/La_2O_3/Al_2O_3催化剂上甲烷干重整积炭表征与分析(英文)   总被引:3,自引:0,他引:3  
用传统的等体积浸渍法或蒸发法制备了Ni/La_2O_3/γ-Al_2O_3与Ni/La_2O_3/α-Al_2O_3催化剂,在没有稀释气体的条件下进行了甲烷干重整反应.采用H_2程序升温还原、N_2吸附脱附、X射线衍射、透射电子显微镜、热重-差示扫描热量以及程序升温加氢等手段对新鲜的与反应后的催化剂以及沉积的碳进行了表征.结果表明,催化剂上有四种含碳物种,以三种形态存在,即无定形碳(聚合态)、丝状碳或石墨碳.这些催化剂上积炭的数量与种类各不相同,依赖于催化剂中金属Ni颗粒的大小与载体的织构特性.丝状碳的形成及其形貌与金属Ni颗粒的大小有着密切的联系.Ni颗粒小于15nm时能抑制丝状碳的形成与沉积.减少积炭的数量,同时能产生较多的活性C_a物种,从而在一定程度上导致催化剂具有较好的活性与稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号