首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
Microporous amorphous hydrophobic silica materials with well‐defined pores were synthesized by replication of the metal–organic framework (MOF) [Cu3(1,3,5‐benzenetricarboxylate)2] (HKUST‐1). The silica replicas were obtained by using tetramethoxysilane or tetraethoxysilane as silica precursors and have a micro–meso binary pore system. The BET surface area, the micropore volume, and the mesopore volume of the silica replica, obtained by means of hydrothermal treatment at 423 K with tetraethoxysilane, are 620 m2g?1, 0.18 mL g?1, and 0.55 mL g?1, respectively. Interestingly, the silica has micropores with a pore size of 0.55 nm that corresponds to the pore‐wall thickness of the template MOF. The silica replica is hydrophobic, as confirmed by adsorption analyses, although the replica has a certain amount of silanol groups. This hydrophobicity is due to the unique condensation environment of the silica precursors in the template MOF.  相似文献   

2.
Hierarchically organized silica–titania monoliths were synthesized under purely aqueous conditions by applying a new ethylene glycol‐modified single‐source precursor, such as 3‐[3‐{tris(2‐hydroxyethoxy)silyl}propyl]acetylacetone coordinated to a titanium center. The influence of the silicon‐ and titanium‐containing single‐source precursor, the novel glycolated organofunctional silane, and the addition of tetrakis(2‐hydroxyethyl)orthosilicate on the formation of the final porous network was investigated by SEM, TEM, nitrogen sorption, and SAXS/WAXS. In situ SAXS measurements were performed to obtain insight into the development of the mesoporous network during sol–gel transition. IR‐ATR, UV/Vis, XPS, and XAFS measurements showed that up to a Si/Ti ratio of 35:1, well‐dispersed titanium centers in a macro‐/mesoporous SiO2 network with a specific surface area of up to 582 m2 g?1 were obtained. An increase in Ti content resulted in a decrease in specific surface area and a loss of the cellular character of the macroporous network. With a 1:1 Si/Ti ratio, silica–titania powders with circa 100 m2 g?1 and anatase domains within the SiO2 matrix were obtained.  相似文献   

3.
Highly ordered 3D‐hexagonal mesoporous silica HMS‐3 and its vinyl‐ and 3‐chloropropyl‐functionalized analogues HMS‐4 and ‐5, respectively, are synthesized under strongly alkaline conditions at 277 K. Tetraethyl orthosilicate, vinyltrimethoxysilane, and 3‐chloropropyltrimethoxysilane are used as silica sources, and cetyltrimethylammonium bromide as the structure‐directing agent. The 3D‐hexagonal pore structures of HMS‐3, 4‐, and ‐5 were confirmed by powder XRD and high‐resolution TEM studies. Brunauer–Emmett–Teller surface areas of these materials are 1353, 1211, and 603 m2 g?1 for HMS‐3, ‐4, and ‐5, respectively. Among these materials, vinyl‐functionalized mesoporous material HMS‐4 adsorbs the highest CO2 (5.5 mmol g?1, 24.3 wt %) under 3 bar pressure at 273 K. The 3D‐hexagonal pore openings, very high surface area, and cagelike mesopores as well as organic functionalization could be responsible for very high CO2 uptakes of these materials compared to other related mesoporous silica‐based materials.  相似文献   

4.
Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high‐temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core–shell nanostructures. These core–shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer–Emmett–Teller (BET) method. The as‐synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m2 g?1) and formed stable dispersions in water after the pegylation process. The drug‐loading and drug‐release properties of these hollow carbon nanocapsules were also investigated.  相似文献   

5.
Limited strategies have been established to prepare monodisperse mesoporous carbon nanospheres (MCNs) with tailored pore sizes. In this work, a method is reported to synthesize MCNs by combining polymerization of aniline with co‐assembly of colloidal silica nanoparticles. The controlled self‐assembly behavior of colloidal silica enables the formation of uniform composite nanospheres and convenient modulation over mesopores. After carbonization and removal of sacrificial templates, the resultant MCNs possess tunable mesopores (7–42 nm) and spherical diameters (90–300 nm), as well as high surface area (785–1117 m2 g?1), large pore volume (1.46–2.01 cm3 g?1) and abundant nitrogen moieties (5.54–8.73 at %). When serving as metal‐free electrocatalysts for the oxygen reduction reaction (ORR), MCNs with an optimum pore size of 22 nm, compared to those with 7 and 42 nm, exhibit the best ORR performance in alkaline medium.  相似文献   

6.
Mesoporous titania–organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co‐condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4‐bis(triethoxysilyl) benzene (BTEB) and 1,2‐bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200–360 m2 g?1) and pore volumes (0.3 cm3 g?1) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the TiIV coordination and an increase in the content of Si?O?Ti moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania–silica materials as compared to both uncalcined samples and the control TiO2.  相似文献   

7.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

8.
By pyrolyzing cattle bones, hierarchical porous carbon (HPC) networks with a high surface area (2520 m2 g?1) and connected pores were prepared at a low cost and large scale. Subsequent co‐pyrolysis of HPC with vitamin B12 resulted in the formation of three‐dimensional (3D) hierarchically structured porous cobalt–nitrogen–carbon (Co‐N‐HPC) electrocatalysts with a surface area as high as 859 m2 g?1 as well as a higher oxygen reduction reaction (ORR) electrocatalytic activity, better operation stability, and higher tolerance to methanol than the commercial Pt/C catalyst in alkaline electrolyte.  相似文献   

9.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

10.
Hierarchical mesoporous carbon materials with large microporosity were prepared by direct tri-constituent co-assembly with the use of resols as the carbon precursor, tetraethyl orthosilicate as the inorganic precursor, and triblock copolymer F127 as the soft template. Bimodal pore size distributions in the range of 1.5–4 and 7.5–12 nm were obtained in the synthesized hierarchical mesoporous carbon materials after etching of silica by HF acid, showing a high surface area of 1,675 m2?g?1 with a large pore volume of 2.06 cm3?g?1. The electrochemical performance of the hierarchical mesoporous carbons was evaluated as an electrode material for electrochemical supercapacitor, showing a specific capacitance as high as 152 F?g?1 at a scan rate of 5 mV?s?1 in 6 M KOH aqueous solution and a good cycling stability with capacitance retention of 99 % over 500 cycles.  相似文献   

11.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

12.
Copper(II)‐ion imprinted silica gel (Cu‐IISG) sorbent was synthesized by surface imprinting technique and was employed as a selective solid‐phase extraction material for on‐line preconcentration and separation, then coupled with atomic absorption spectrometry (AAS) determination of Cu(II). The higher selectivity coefficient of Cu‐IISG for Cu(II) in the presence of competitive ions such as Fe(III), Ni(II) and Zn(II) was above 411, which was 35 times of NISG. The static adsorption capacity and dynamic adsorption capacity were 41.11 mg g?1 and 16.20 mg g?1, respectively. The Cu‐IISG offered a fast kinetics for the adsorption and desorption of Cu(II), which can be used for on‐line preconcentration and detection. Two certified reference materials of GBW07301a sediment and GBW07401 soil were analyzed and the determined values were in a good agreement with the certified values. The developed method was also successfully applied to the determination of trace copper in tea leaf with satisfactory results (recovery between 96.3% and 102.3%).  相似文献   

13.
In the work the procedure of chromium(VI) determination by catalytic adsorptive stripping voltammetry (CAdSV) with application of fumed silica, is presented. Two variants of the method are proposed: in the first fumed silica is put directly to the electrolytic cell containing tested solution, in the second the silica is shaken with the sample and next centrifuged. The effectiveness of many surface‐active substances removal from synthetic solutions as well as natural water samples, is studied. In the experiments the fumed silica (Sigma‐Aldrich) of the specific surface area in the range 200–390 m2 g?1 was used. Two types of the working electrodes were applied, i.e., hanging mercury drop electrode (HMDE) and cyclic renewable mercury film electrode (Hg(Ag)FE). In the silica presence i) the relative standard deviation (RSD) for 0.1 μg L?1 Cr(VI) is <2% (HMDE) and <5% (Hg(Ag)FE), n=7, ii) the detection limits estimated deposition time 20 s were respectively 14 ng L?1 (HMDE) and 22 ng L?1 (Hg(Ag)FE). The accuracy of the method was tested by studying the recovery of Cr(VI) from spiked natural water samples.  相似文献   

14.
Titanium is successfully incorporated in hexagonal mesoporous silica to form Ti‐MCM41 at low temperature. Silatrane and titanium glycolate synthesized from the oxide one‐pot synthesis process are used as the precursors. Using the cationic surfactant cetyltrimethylammonium bromide as a template, the resulting meso‐structure mimics the liquid‐crystal phase. The percentage of titanium loading is varied in the range 1–35%. The temperatures used in the preparation are 60 °C and 80 °C. After heat treatment, very high surface area mesoporous silica was obtained and characterized using diffuse reflectance UV (DRUV) spectroscopy, X‐ray diffraction (XRD), BET surface area, X‐ray fluorescence, energy dispersive spectroscopy and transmission electron microscopy (TEM). At 35% titanium, the titanium atom is also in the framework showing the pattern of hexagonal mesostructure, as shown by DRUV, XRD and TEM results. The surface area is extraordinarily high, up to more than 2300 m2 g?1, and the pore volume is as high as 1.3 cm3 g?1 for a titanium loading range of 1–5%. Oxidative bromination reaction using Ti‐MCM‐41 as catalyst showed impressive results, with the 60 °C catalysts having higher activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Ordered mesoporous silicas (OMSs) with spherical morphology were synthesized by using mixed surfactants of anionic sodium dodecyl sulfate and nonionic block copolymer EO20PO70EO20 (P123) as template through an acid-catalyzed silica sol?Cgel process. A variety of characterizations demonstrated that the silica products exhibited well-formed spherical morphology, ordered mesostructure, narrow pore size distribution and large surface area (~700 m2 g?1). It was found that the synthesized OMSs had high adsorption capacity by using oxymatrine as model solute. The column packed with the silica spheres exhibited low back pressure and baseline separation of aromatic compounds such as benzene and nitrobenzene could be achieved. These results demonstrated the synthesized OMSs as a potential stationary phase for liquid chromatography.  相似文献   

16.
A new Cu(II)‐imprinted salen functionalized silica gel adsorbent was synthesized by surface imprinting technique and was employed as a selective solid phase extraction material for Cu2+ removal from aqueous solutions. The samples were characterized by FT‐IR, 1HNMR, 13CNMR, CHNS and DTG techniques. The BET surface area of the silica gel was also determined. The adsorbent was then used for removal of Cu2+ from aqueous solutions under different experimental conditions. It was concluded that the synthesized imprinted silica gel had higher selectivity and capacity compared to the non‐imprinted silica gel and the maximal adsorption capacity of 67.3 and 56.5 mg.g?1 was obtained respectively for ion‐imprinted and non‐imprinted adsorbents. The relative selectivity factor (β) of 50.32 and 31.94 was obtained respectively for Cu2+/Ni2+ and Cu2+/Zn2+ pairs. The dynamic adsorption capacity of the imprinted adsorbent was close to the static adsorption capacity due to the fast kinetic of adsorption. Furthermore, the ion‐imprinted adsorbent was recovered and repeatedly used and satisfactory adsorption capacity with acceptable precision was obtained. Each experiment was repeated at least for three times and the mean and the standard deviation for each measurement were calculated. The applicability of the method was examined for Zayandehrood water as real sample. Acceptabe standard deviation was obtained.  相似文献   

17.
A new fluorescent hybrid porous polymer (HPP) is synthesized by an anhydrous FeCl3‐mediated oxidative coupling reaction of octa[4‐(9‐carbazolyl)phenyl]silsesquioxane (OCPS). The polymer possesses a surface area of 1741 m2 g?1 and hierarchical bimodal micropores (1.41 and 1.69 nm) and mesopores (2.65 nm). The material serves as an excellent adsorbent for CO2 and dyes with high adsorption capacity for CO2 (8.53 wt %,1.94 mmol g?1), congo red (1715 mg g?1) and rhodamine B (1501 mg g?1). In addition, the presence of peripheral cabozolyl groups with extended π‐conjugation in the crosslinked framework imparts luminescent character to the polymer and offers the detection of nitroaromatic compounds.  相似文献   

18.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

19.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

20.
LUS‐1 typed nanoporous silica particles were synthesized and silylated with hexamethyldisilazane and investigated as a highly porous fiber coating for solid‐phase microextraction (SPME). The pore size distribution of the prepared Sil‐LUS‐1 was still typical of MCM‐41 and centered at 3 nm with a specific surface area of 720 m2g?1. The SPME fiber was prepared by liming the material on a copper wire. The extraction efficiency of the new fiber was compared with a commercial PDMS fiber for headspace extraction and GC‐MS analysis of phenol, 4‐nitrophenol, 2,4‐dichlorophenol and 4‐chlorophenol in water samples. Due to the high porosity of the prepared fiber it showed a higher sensitivity and better selectivity for the extraction of the target compounds. For optimization of different factors affecting the extraction efficiency, a simplex optimization method was used. The relative standard deviation for the measurements by one fiber was better than 7% for five replicates and the fiber‐to‐fiber reproducibility was about 10% for five fabricated fibers. Detection limits in the range of 0.002 to 0.026 μg mL?1 were obtained for the phenolic compounds. The fiber was successfully applied for the determination of phenolic compounds in natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号