首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

2.
P2‐type Na2/3Ni1/3Mn2/3O2 was synthesized by a controlled co‐precipitation method followed by a high‐temperature solid‐state reaction and was used as a cathode material for a sodium‐ion battery (SIB). The electrochemical behavior of this layered material was studied and an initial discharge capacity of 151.8 mA h g?1 was achieved in the voltage range of 1.5–3.75 V versus Na+/Na. The retained discharge capacity was found to be 123.5 mA h g?1 after charging/discharging 50 cycles, approximately 81.4 % of the initial discharge capacity. In situ X‐ray diffraction analysis was used to investigate the sodium insertion and extraction mechanism and clearly revealed the reversible structural changes of the P2‐Na2/3Ni1/3Mn2/3O2 and no emergence of the O2‐Ni1/3Mn2/3O2 phase during the cycling test, which is important for designing stable and high‐performance SIB cathode materials.  相似文献   

3.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

4.
We report the synthesis and anode application for sodium‐ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as‐prepared WS2 NWs were evaluated as anode materials of SIBs in two potential windows of 0.01–2.5 V and 0.5–3 V. WS2 NWs displayed a remarkable capacity (605.3 mA h g?1 at 100 mA g?1) but with irreversible conversion reaction in the potential window of 0.01–2.5 V. In comparison, WS2 NWs showed a reversible intercalation mechanism in the potential window of 0.5–3 V, in which the nanowire‐framework is well maintained. In the latter case, the interlayers of WS2 are gradually expanded and exfoliated during repeated charge–discharge cycling. This not only provides more active sites and open channels for the intercalation of Na+ but also facilitates the electronic and ionic diffusion. Therefore, WS2 NWs exhibited an ultra‐long cycle life with high capacity and rate capability in the potential window of 0.5–3 V. This study shows that WS2 NWs are promising as the anode materials of room‐temperature SIBs.  相似文献   

5.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   

6.
The sluggish sodium reaction kinetics, unstable Sn/Na2O interface, and large volume expansion are major obstacles that impede practical applications of SnO2‐based electrodes for sodium‐ion batteries (SIBs). Herein, we report the crafting of homogeneously confined oxygen‐vacancy‐containing SnO2?x nanoparticles with well‐defined void space in porous carbon nanofibers (denoted SnO2?x/C composites) that address the issues noted above for advanced SIBs. Notably, SnO2?x/C composites can be readily exploited as the working electrode, without need for binders and conductive additives. In contrast to past work, SnO2?x/C composites‐based SIBs show remarkable electrochemical performance, offering high reversible capacity, ultralong cyclic stability, and excellent rate capability. A discharge capacity of 565 mAh g?1 at 1 A g?1 is retained after 2000 cycles.  相似文献   

7.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

8.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

9.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

10.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

11.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

12.
《中国化学》2017,35(8):1294-1298
Amorphous MnO2 has been prepared from the reduction of KMnO4 in ethanol media by a facile one‐step wet chemical route at room temperature. The electrochemical properties of amorphous MnO2 as cathode material in sodium‐ion batteries (SIBs ) are studied by galvanostatic charge/discharge testing. And the structure and morphologies of amorphous MnO2 are investigated by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), transmission electron microscopy (TEM ) and Raman spectra. The results reveal that as‐synthesized amorphous MnO2 electrode material exhibits a spherical morphology with a diameter between 20 and 60 nm. The first specific discharge capacity of the amorphous MnO2 electrode is 123.2 mAh •g−1 and remains 136.8 mAh •g−1 after 100 cycles at the current rate of 0.1 C. The specific discharge capacity of amorphous MnO2 is maintained at 139.2, 120.4, 89, 68 and 47 mAh •g−1 at the current rate of 0.1 C, 0.2 C, 0.5 C, 1 C and 2 C, respectively. The results indicate that amorphous MnO2 has great potential as a promising cathode material for SIBs .  相似文献   

13.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

14.
Sodium‐ion batteries (SIBs) are regarded as an attractive alternative to lithium‐ion batteries (LIBs) for large‐scale commercial applications, because of the abundant terrestrial reserves of sodium. Exporting suitable anode materials is the key to the development of SIBs and LIBs. In this contribution, we report on the fabrication of Bi@C microspheres using aerosol spray pyrolysis technique. When used as SIBs anode materials, the Bi@C microsphere delivered a high capacity of 123.5 mAh g?1 after 100 cycles at 100 mA g?1. The rate performance is also impressive (specific capacities of 299, 252, 192, 141, and 90 mAh g?1 are obtained under current densities of 0.1, 0.2, 0.5, 1, and 2 A g?1, respectively). Furthermore, the Bi@C microsphere also proved to be suitable LIB anode materials. The excellent electrochemical performance for both SIBs and LIBs can attributed to the Bi@C microsphere structure with Bi nanoparticles uniformly dispersed in carbon spheres.  相似文献   

15.
Prussian blue and its analogues (PBAs) have been recognized as one of the most promising cathode materials for room‐temperature sodium‐ion batteries (SIBs). Herein, we report high crystalline and Na‐rich Prussian white Na2CoFe(CN)6 nanocubes synthesized by an optimized and facile co‐precipitation method. The influence of crystallinity and sodium content on the electrochemical properties was systematically investigated. The optimized Na2CoFe(CN)6 nanocubes exhibited an initial capacity of 151 mA h g?1, which is close to its theoretical capacity (170 mA h g?1). Meanwhile, the Na2CoFe(CN)6 cathode demonstrated an outstanding long‐term cycle performance, retaining 78 % of its initial capacity after 500 cycles. Furthermore, the Na2CoFe(CN)6 Prussian white nanocubes also achieved a superior rate capability (115 mA h g?1 at 400 mA g?1, 92 mA h g?1 at 800 mA g?1). The enhanced performances could be attributed to the robust crystal structure and rapid transport of Na ions through large channels in the open‐framework. Most noteworthy, the as‐prepared Na2CoFe(CN)6 nanocubes are not only low‐cost in raw materials but also contain a rich sodium content (1.87 Na ions per lattice unit cell), which will be favorable for full cell fabrication and large‐scale electric storage applications.  相似文献   

16.
Cu3V2O8 nanoparticles with particle sizes of 40–50 nm have been prepared by the co‐precipitation method. The Cu3V2O8 electrode delivers a discharge capacity of 462 mA h g?1 for the first 10 cycles and then the specific capacity, surprisingly, increases to 773 mA h g?1 after 50 cycles, possibly as a result of extra lithium interfacial storage through the reversible formation/decomposition of a solid electrolyte interface (SEI) film. In addition, the electrode shows good rate capability with discharge capacities of 218 mA h g?1 under current densities of 1000 mA g?1. Moreover, the lithium storage mechanism for Cu3V2O8 nanoparticles is explained on the basis of ex situ X‐ray diffraction data and high‐resolution transmission electron microscopy analyses at different charge/discharge depths. It was evidenced that Cu3V2O8 decomposes into copper metal and Li3VO4 on being initially discharged to 0.01 V, and the Li3VO4 is then likely to act as the host for lithium ions in subsequent cycles by means of the intercalation mechanism. Such an “in situ” compositing phenomenon during the electrochemical processes is novel and provides a very useful insight into the design of new anode materials for application in lithium‐ion batteries.  相似文献   

17.
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.  相似文献   

18.
In the work, a facile and green two‐step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle‐shaped mesoporous ZnFe2O4 microrods (MRs) with a high tap density of ~0.85 g cm3, which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long‐life anode for advanced Li‐ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g?1, the resulting ZnFe2O4 MRs with high loading of ~1.4 mg per electrode still preserved a reversible capacity as large as ~542 mAh g?1. Furthermore, an initial charge capacity of ~1150 mAh g?1 is delivered by the ZnFe2O4 anode at 100 mA g?1, resulting in a high Coulombic efficiency of ~76 % for the first cycle. The superior Li‐storage properties of the as‐obtained ZnFe2O4 were rationally associated with its mesoprous micro‐/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li+ transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode–electrolyte sur‐/interfaces for efficient lithium storage, particularly at high rates.  相似文献   

19.
Spinel cathode materials consisting of LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by a facile solution‐phase coating and subsequent solid‐phase lithiation route in an atmosphere of air. When used as the cathode of lithium‐ion batteries, the double‐shell LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres thus obtained show a high specific capacity of 120 mA h g?1 at 1 C rate, and excellent rate capability (90 mAhg?1 at 10 C) over the range of 3.5–5 V versus Li/Li+ with a retention of 95 % over 500 cycles.  相似文献   

20.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号