首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of a cationic Ru catalyst, 1,6‐diynes bearing a terminal styryl moiety underwent [2+2+2] cyclization to produce dehydrobiphenylenes fused with a five‐membered ring. Although the cycloadducts were unstable toward purification, their one‐pot iodine‐mediated ring expansion successfully afforded unprecedented bridged ketone products containing a benzo‐fused bicyclo[3.2.1] framework.  相似文献   

2.
The preparation of new ring opening metathesis polymerization (ROMP) monomers using a 1,3‐dipolar cycloaddition between aryl azides and norbornadiene is described. Various norbornenetriazolines, obtained through a solvent‐and catalyst‐free reaction, can subsequently be incorporated into polymer backbones through ROMP reactions. Furthermore, thermal decomposition of the triazoline moiety can allow for further polymer functionalization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2357–2362  相似文献   

3.
The construction of diverse sp3‐rich skeletal ring systems is of importance to drug discovery programmes and natural product synthesis. Herein, we report the photocatalytic construction of 2,7‐diazabicyclo[3.2.1]octanes (bridged 1,3‐diazepanes) via a reductive diversion of the Minisci reaction. The fused tricyclic product is proposed to form via radical addition to the C4 position of 4‐substituted quinoline substrates, with subsequent Hantzsch ester‐promoted reduction to a dihydropyridine intermediate which undergoes in situ two‐electron ring closure to form the bridged diazepane architecture. A wide scope of N‐arylimine and quinoline derivatives was demonstrated and good efficiency was observed in the construction of sterically congested all‐carbon quaternary centers. Computational and experimental mechanistic studies provided insights into the reaction mechanism and observed regioselectivity/diastereoselectivity.  相似文献   

4.
Aromaticity is one of the most important concepts in organic chemistry. A variety of metalla‐aromatic compounds have been recently prepared and in most of those examples, the metal participates only in a monocyclic ring. In contrast, metal‐bridged bicyclic aromatic molecules, in which a metal is shared between two aromatic rings, have been less developed. Herein, we report the first metal‐bridged tricyclic aromatic system, in which the metal center is shared by three aromatic five‐membered rings. These metalla‐aromatics are formed by reaction between osmapentalyne and arene nucleophiles. Experimental results and theoretical calculations reveal that the three five‐membered rings around the osmium center are aromatic. In addition, the broad absorption bands in the UV/Vis absorption spectra of these novel aromatic systems cover almost the entire visible region. This straightforward synthetic strategy may be extended to the synthesis of other metal‐bridged polycyclic aromatics.  相似文献   

5.
Herein, cylindrical molecular bottlebrushes grafted with poly(2‐oxazoline) (POx) as a shaped tunable uni‐molecular nanoparticle were synthesized via the grafting‐onto approach. First, poly(glycidyl methacrylate) (PGMA) backbones with azide pendant units were prepared via reversible addition fragmentation transfer (RAFT) polymerization followed by post‐modification. The degree of polymerization (DP) of the backbones was tuned in a range from 20 to 800. Alkynyl‐terminated POx side chains were synthesized by living cationic ring opening polymerization (LCROP) of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐methyl‐2‐oxazoline (MeOx), respectively. The DP of side chains was varied between 20 and 100. Then, the copper‐catalyzed azide‐alkynyl cycloaddition (CuAAC) click chemistry was conducted with a feed ratio of [alkynyl]:[azide] = 1.2:1 to yield a series of brushes. Depending on the DP of side chains, the grafting density ranged between 47 and 85%. The resulting brushlike nanoparticles exhibited shapes of sphere, rod and worm. Aqueous solutions of PEtOx brushes demonstrated a thermoresponsive behavior as a function of the length of backbones and side chains. Surprisingly, it was found that the lower critical solution temperature of PEtOx brushes increased with a length increase of backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 174–183  相似文献   

6.
The thermal alignment of the liquid crystalline fluorene‐thiophene copolymer (F8T2) on rubbed polyimide surfaces is investigated by ex‐situ and in‐situ X‐ray scattering experiments. The ex‐situ characterization allows an assignment of the observed diffraction peaks to distances between polymer backbones (1.6 nm), distances between the flexible side groups of the polymer chains (0.43 nm), and intramolecular distances of adjacent ring units (0.5 nm). The in‐situ characterization allows a temperature dependent observation of the polymer chain alignment. A gradual alignment process of the polymer backbones is observed for temperatures up to 563 K. Decreasing temperature after the polymer chain alignment is accompanied by a glass transition of the side chains at 380 K. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:1599–1604, 2009  相似文献   

7.
《化学:亚洲杂志》2017,12(17):2216-2220
A series of novel BODIPY dyes has been prepared through the introduction of an N‐bridged annulated meso ‐phenyl ring at one of the β‐positions of the BODIPY core. An unusual blueshift of the main spectral bands is observed, since the fusion of a meso ‐substituent results in a marked relative destabilization of the LUMO. The greater rigidity of the ring‐fused structure leads to very high fluorescence quantum yields. The position of the main spectral bands can be fine‐tuned by introducing electron withdrawing and donating groups onto the meso ‐phenyl ring.  相似文献   

8.
Achieving in a straightforward way the synthesis of enantioenriched elaborated three‐dimensional molecules related to bioactive natural products remains a long‐standing quest in organic synthesis. Enantioselective organocatalysis potentially offers a unique opportunity to solve this problem, especially when combined with complementary modes of activation. Here, we report the sequential association of organocatalytic and superacid activations of simple linear achiral readily available precursors to promote the formation of unique highly elaborated chiral methylene‐bridged benzazocanes exhibiting three to five fully‐controlled stereocenters. This peculiar backbone, difficult to assemble by standard synthetic approaches, is closely related to bioactive natural and synthetic morphinans and benzomorphans. The formation of a highly reactive chiral 7‐membered ring N‐acyl iminium superelectrophilic ion, evidenced by low‐temperature in situ NMR experiments, triggers a challenging stereoselective Friedel–Crafts‐type cyclization.  相似文献   

9.
《Chemphyschem》2003,4(8):830-837
High‐level density functional theory computations have been used to estimate the gas‐phase (intrinsic) acidities of the complete series of 1,8‐chalcogen‐bridged naphthalene derivatives. The existence of a chalcogen? chalcogen bond in chalcogen‐bridged naphthalene derivatives plays a crucial role in the intrinsic acidity of the system. For 1,8‐naphthalenediylbis(oxy), where this bond does not exist, the para C? H group is the most acidic site, whereas for the remaining compounds, deprotonation of the ortho CH groups is the most favorable process. Deprotonation of the aromatic rings has a large effect on the strength of the bonds of the five‐membered ring. These effects depend on the nature of the heteroatoms forming the X? Y bridge, and modulate the acidity of the molecule. Also importantly, when one of the heteroatoms is oxygen, ortho and para deprotonation lead to cleavage of the X? Y bridge. This bond fission favors the formation of a CYC (Y=S, Se, Te) three‐membered ring that enhances the stability of the anion and, therefore, increases the acidity of these compounds. We have shown that, whereas this cyclization process is energetically favorable for oxygen‐containing compounds, it is not favorable for the remaining derivatives.  相似文献   

10.
For the last ten years, ring‐shaped π‐conjugated macrocycles possessing radially directed π‐orbitals have been subject to intense research. The electronic properties of these rings are deeply dependent on their size. However, most studies involve the flagship family of nanorings: the cyclo‐para‐phenylenes. We report herein the synthesis and study of the first examples of cyclofluorenes possessing five constituting fluorene units. The structural, optical and electrochemical properties were elucidated by X‐ray crystallography, UV‐vis absorption and fluorescence spectroscopy, and cyclic voltammetry. By comparison with a shorter analogue, we show how the electronic properties of [5]‐cyclofluorenes are drastically different from those of [4]‐cyclofluorenes, highlighting the key role played by the ring size in the cyclofluorene family.  相似文献   

11.
Herein, a dual‐gold catalyzed cyclization of 3,4‐diethynylthiophenes generating pentaleno[c]thiophenes through gold–vinylidenes and C?H bond activation is disclosed. Various new heteroaromatic compounds—substrate classes unexplored to date—exhibiting three five‐membered annulated ring systems could be synthesized in moderate to high yields. By comparison of the solid‐state structures of the corresponding gold–acetylides, it could be demonstrated that the cyclization mode (5‐endo versus 6‐endo) is controlled by the electronic and not steric nature of the diyne backbone. Depending on different backbones, we calculated thermodynamic stabilities and full potential‐energy surfaces giving insight into the crucial dual‐activation cyclization step. In the case of the 3,4‐thiophene backbone, in which the initial cyclization is rate and selectivity determining, two energetically distinct transition states could be localized explaining the observed 5‐endo cyclization mode by classical transition‐state theory. In the case of vinyl and 2,3‐thiophene backbones, the theoretical analysis of the cyclization mode in the bifurcated cyclization area demonstrated that classical transition‐state theory is no longer valid to explain the high experimentally observed selectivity. Herein, for the first time, the influence of the backbone and the aromatic stabilization effect of the 6‐endo product in the crucial cyclization step could be visualized and quantified by calculating and comparing the full potential‐energy surfaces.  相似文献   

12.
We describe the synthesis as well as the optical and charge‐transport properties of a series of donor–acceptor (D‐A) ladder‐type heteroacenes. These molecules are stable, soluble, and contain up to 24 fused rings. Structural analyses indicated that the backbones of S 10r and Se 10r are bent in single crystals. The three 10‐ring heteroacenes were functionalized with thiol anchoring groups and used for single‐molecular conductance measurements. The highest conductance was observed for molecular wires containing a benzoselenadiazole (BSD) moiety, which exhibits the narrowest band gap. Multiple charge‐transport pathways were observed in molecular wires containing either benzothiadiazole (BTD) or BSD. The conductance is a complex function of both energy gap and orbital alignment.  相似文献   

13.
A highly atom‐economic one‐pot synthesis of five‐substituted tetrahydropyridines via a five‐component condensation of two equivalents of aromatic aldehyde, two equivalents of aromatic aniline, and one equivalent of β‐keto ester catalyzed by silica sulfuric acid is reported. In this reaction, up to five new bonds and one new ring were formed in one pot with water as the only one by‐product.  相似文献   

14.
We describe a one‐pot strategy for the fabrication of novel slide‐ring (SR) gels based on supramolecular polyrotaxane structures with cyclodextrin‐derived cross‐links and additional free cyclodextrin ring spacers co‐threaded onto the polymer backbones. Photoinitiated thiol‐yne click coupling leads to facile hydrogel fabrication from pseudo‐polyrotaxanes prepared in situ from β‐cyclodextrin derivatives and bifunctional polyethylene glycol (PEG). The obtained SR gels were characterized by NMR spectroscopy using a polyrotaxane model compound with the ratio of cyclodextrin sliding spacers to PEG backbone controlled by adjusting the feed ratio of the starting materials. This structural tuning leads to dramatic changes in the rheological properties, mechanical properties, and swelling behavior of the SR gels. In addition, the coupling of simple synthetic procedures with enhanced properties offers a versatile approach to novel elastomeric materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1156–1165  相似文献   

15.
A powerful palladium‐catalyzed dearomative cyclization was developed that provides facile access to eight types of bridged tetracyclic skeletons bearing various ring sizes and heterocycles. With this method, several skeletons or analogues of natural products, including tubingensin B and dracaenones, were synthesized. Asymmetric dearomative cyclization enables the construction of various enantiomerically enriched bridged polycyclic systems with up to 99 % ee by employing a chiral palladium catalyst.  相似文献   

16.
Rigid polymer backbones have often been considered to be detrimental to the packing of mesogenic pendants, and polyacetylenes have generally been regarded as unpromising materials for light‐emitting applications. Our group, however, has succeeded in creating a series of liquid‐crystalline polyacetylenes with rigid backbones and a variety of light‐emitting polyacetylenes with luminescent chromophores. Here we demonstrate that the rigid polyacetylene skeleton can play a constructive role in guiding the alignments of mesogenic pendants and prove that polyacetylenes can be highly emissive with photoluminescence quantum yields of up to 98% and electroluminescence performances comparable or superior to those of the best blue‐light‐emitting polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2607–2629, 2003  相似文献   

17.
This work deals with the synthesis and cationic ring‐opening polymerization behavior of a novel five‐membered cyclic thiocarbonate bearing a spiro‐linked adamantane moiety, tricyclo[3.3.1.13,7]decane‐2‐spiro‐4′‐(1′,3′‐dioxolane‐2′‐thione) ( TC2 ). The cationic ring‐opening polymerization of TC2 did not proceed with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, triethyloxonium tetrafluoroborate (Et3OBF4), boron trifluoride etherate (BF3OEt2), titanium tetrachloride, or methyl iodide as the initiator, presumably because of the steric hindrance of the adamantane moiety. However, the cationic ring‐opening copolymerization of TC2 with five‐ or six‐membered cyclic thiocarbonates, that is, 1,3‐dioxolane‐2‐thione, 1,3‐dioxane‐2‐thione, 5‐methyl‐1,3‐dioxane‐2‐thione, or 5,5‐dimethyl‐1,3‐dioxane‐2‐thione, initiated by BF3OEt2 or Et3OBF4, proceeded to afford the corresponding copolymer via a selective ring‐opening direction. The increase in the feed ratio of TC2 in the copolymerization increased the unit ratio derived from TC2 in the copolymer; however, the molecular weight of the copolymer decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 699–707, 2003  相似文献   

18.
There are a limited number of ring‐contraction methodologies which convert readily available five‐membered rings into strained four‐membered rings. Here we report a photo‐induced radical‐mediated ring contraction of five‐membered‐ring alkenyl boronate complexes into cyclobutanes. The process involves the addition of an electrophilic radical to the electron‐rich alkenyl boronate complex, leading to an α‐boryl radical. Upon one‐electron oxidation, ring‐contractive 1,2‐metalate rearrangement occurs to give a cyclobutyl boronic ester. A range of radical precursors and vinyl boronates can be employed, and chiral cyclobutanes can be accessed with high levels of stereocontrol. The process was extended to the preparation of benzofused cyclobutenes and the versatility of the boronic ester was demonstrated by conversion to other functional groups.  相似文献   

19.
Not blue but red‐brown : A [1]ferrocenophanium ion has been synthesized and isolated as a red‐brown crystalline salt, surprisingly different in color from characteristically blue‐green unstrained ferrocenium ions. Compared to the neutral iron(II) counterpart, the [1]ferrocenophanium ion displays a considerably higher ring tilt and an increased propensity for ring‐opening reactions.

  相似文献   


20.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号