首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A computational framework to rank the solvation behavior of Mg2+ in carbonates by using molecular dynamics simulations and density functional theory is reported. Based on the binding energies and enthalpies of solvation calculated at the M06‐2X/6‐311++G(d,p) level of theory and the free energies of solvation from ABF‐MD simulations, we find that ethylene carbonate (EC) and the ethylene carbonate:propylene carbonate (EC:PC) binary mixture are the best carbonate solvents for interacting with Mg2+. Natural bond orbital and quantum theory of atoms in molecules analyses support the thermochemistry calculations with the highest values of charge transfer, perturbative stabilization energies, electron densities, and Wiberg bond indices being observed in the Mg2+(EC) and Mg2+(EC:PC) complexes. The plots of the noncovalent interactions indicate that those responsible for the formation of Mg2+ carbonate complexes are strong‐to‐weak attractive interactions, depending on the regions that are interacting. Finally, density of state calculations indicate that the interactions between Mg2+ and the carbonate solvents affects the HOMO and LUMO states of all carbonate solvents and moves them to more negative energy values.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li+ with pure carbonates and ethylene carbonate (EC)‐based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06‐2X/6‐311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li‐ion solvation in carbonates and EC‐based mixtures. A strong local tetrahedral order involving four carbonates around the Li+ was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li+ ion with carbonates are negative and suggested the ion–carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li+ interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO‐EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li+ ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO‐EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li‐ion batteries, which complies with experiments and other theoretical results.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号