首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on a multi‐technique investigation of the supramolecular organisation of N,N‐diphenyl oxalic amide under differently dimensioned environments, namely three‐dimensional (3D) in the bulk crystal, and in two dimensions on the Ag(111) surface as well as on the reconstructed Au(111) surface. With the help of X‐ray structure analysis and scanning tunneling microscopy (STM) we find that the molecules organize in hydrogen‐bonded chains with the bonding motif qualitatively changed by the surface confinement. In two dimensions, the chains exhibit enantiomorphic order even though they consist of a racemic mixture of chiral entities. By a combination of the STM data with near‐edge X‐ray absorption fine‐structure spectroscopy, we show that the conformation of the molecule adapts such that the local registry of the functional group with the substrate is optimized while avoiding steric hindrance of the phenyl groups. In the low coverage case, the length of the chains is limited by the Au(111) reconstruction lines restricting the molecules into fcc stacked areas. A kinetic Monte Carlo simulated annealing is used to explain the selective assembly in the fcc stacked regions.  相似文献   

2.
The reaction between a preassembled CuI bimetallic molecular clip with a short intermetallic distance and a series of fully aliphatic cyano‐capped ditopic linkers with increasing lengths was investigated. It is shown that, depending on the length of the ditopic linkers, the rational design of unprecedented supramolecular compact metallacycles containing fully aliphatic walls is possible. The specific preorganized molecular arrangement of the molecular clip used favors stabilizing interlinker London dispersion interactions, which allow, as the length of the linkers increases, the selective formation of discrete compact metallacycles at the expense of 1D coordination polymers. The generalizability of this approach was demonstrated by the reaction of fully aliphatic cyano‐capped linkers with two other types of preassembled CuI bimetallic molecular clips that also had short intermetallic distances.  相似文献   

3.
A new kind of Se? N dynamic covalent bond has been found that can form between the Se atom of a phenylselenyl halogen species and the N atom of a pyridine derivative, such as polystyrene‐b‐poly(4‐vinylpyridine). This Se? N dynamic covalent bond can be reversibly and rapidly formed or cleaved under acidic or basic conditions, respectively. Furthermore, the bond can be dynamically cleaved by heating or treatment with stronger electron‐donating pyridine derivatives. The multiple responses of Se? N bond to external stimuli has enriched the existing family of dynamic covalent bonds. It can be used for controlled and reversible self‐assembly and disassembly, which may find potential applications in a number of areas, including self‐healing materials and responsive assemblies.  相似文献   

4.
Rechargeable lithium–oxygen and sodium–oxygen cells have been considered as challenging concepts for next‐generation batteries, both scientifically and technologically. Whereas in the case of non‐aqueous Li/O2 batteries, the occurring cell reaction has been unequivocally determined (Li2O2 formation), the situation is much less clear in the case of non‐aqueous Na/O2 cells. Two discharge products, with almost equal free enthalpies of formation but different numbers of transferred electrons and completely different kinetics, appear to compete, namely NaO2 and Na2O2. Cells forming either the superoxide or the peroxide have been reported, but it is unclear how the cell reaction can be influenced for selective one‐ or two‐electron transfer to occur. In this Minireview, we summarize available data, discuss important control parameters, and offer perspectives for further research. Water and proton sources appear to play major roles.  相似文献   

5.
The incorporation of iodine atoms onto the boron vertices of the o‐carborane framework causes, according to spectroscopic data, a uniform increase in the acidic character of the Cc? H (Cc= cluster carbon) vertices, whereas the incorporation of methyl groups onto the boron vertices of the o‐carborane framework reduces their acidity. Methyl groups when attached to boron are electron‐withdrawing in boron clusters, whereas iodine atoms bonded to boron act as electron donors. This has been proven on B‐methyl and B‐iodinated o‐carboranes with NMR spectroscopy measurements and DFT calculations of natural bond orbital (NBO) charges, which show a cumulative buildup of positive cluster‐only total charge (CTC) on B‐methyl o‐carboranes and a cumulative buildup of negative cluster‐only total charge for B‐iodinated o‐carboranes.  相似文献   

6.
The gas-phase acidity of R--XH (R=H, CH(3), CH(2)CH(3), CH==CH(2), C[triple chemical bond]CH; X=Be, Mg, Ca) alkaline-earth-metal derivatives has been investigated through the use of high-level CCSD(T) calculations by using a 6-311+G(3df,2p) basis set. BeH(2) is a stronger acid than BH(3) and CH(4) for two concomitant reasons: 1) the dissociation energy of the Be--H bond is smaller than the dissociation energies of the B--H and C--H bonds, and 2) the electron affinity of BeH(.) is larger in absolute value than those of BH(2) (.) and CH(3) (.). The acidity also increases on going from BeH(2) to MgH(2) due to these two same factors. Quite importantly, despite the fact that the X--H bonds in the R--XH (X=Mg, Ca) derivatives exhibit the expected X(delta+)--H(delta-) polarity, they behave as metal acids in the gas phase and only Be derivatives behave as carbon acids in the gas phase. The ethylberyllium hydride exhibits an unexpected high acidity compared with the methyl derivative because deprotonation of the system is accompanied by a cyclization that stabilizes the anion. Similarly to that found for derivatives that contain heteroatoms from groups 14, 15, and 16, the unsaturated compounds are stronger acids than the saturated counterparts, with the only exception of the Ca-vinyl derivative. Most importantly, among ethyl, vinyl, and ethynyl derivatives containing a heteroatom of the main group of the Periodic Table, those containing Be, Mg, and Ca are among the strongest gas-phase acids.  相似文献   

7.
Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2‐dicarboxylates were accessed in high yields, including functionalized 3‐/4‐aryl‐ and alkyl‐substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.  相似文献   

8.
Arginine forms much less stable dimers than 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate although the principal binding interactions are very similar. The reasons for this difference are addressed in this work by state-of-the-art ab initio computations. The investigation shows that the extraordinary high stability of the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer results to about 50 % from the rigidity of its monomer. Within this study monomer and dimer conformers of arginine were calculated leading to new low lying structures which have not been reported before as well as new global minima are predicted. In these structures stacking interactions with the guanidinium moiety are especially important. For the monomer we predict the energy minimum to be the canonical form with the lowest lying zwitterionic structure being only 9 kJ mol(-1) less stable. During the course of these calculations we found that DFT did not predict the structures and their relative energy correctly in comparison to perturbation theory (MP2) and some potential reasons for the failure of DFT in these cases are discussed. Vibrational frequencies of the various structures are presented and a suitable wavenumber region for an experimental determination of the global minimum of the arginine monomer is identified. The effect of molecular rigidity on the self-assembly is probed using a local minimum of the arginine monomer which does not possess any intramolecular stabilizing effects. Our results suggest that the deliberate control of the conformational flexibility is a powerful instrument to steer the complex affinity of artificial hosts.  相似文献   

9.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

10.
A method for the preparation of the first acetylenedicarboxamidinium salt from a bis‐orthoamide derivative of acetylenedicarboxyclic acid has been established. The salt reacted with cyclopentadiene and furan at room temperature to give bicyclic [4+2]‐cycloaddition products. The solid compounds were characterized by solution NMR spectroscopy and by single‐crystal X‐ray diffraction. Quantum‐chemical calculations of the isolated N,N,N′,N′,N′′,N′′,N′′′,N′′′‐octamethyl‐acetylene‐bis(carboxamidinium) ion showed very good agreement with the spectroscopic and diffraction data.  相似文献   

11.
12.
Full structural characterisation and complete synthetic procedures for three monohalogenated cobaltacarborane compounds closo-[3-Co(eta5-C5H5)-8-X-1,2-C2B9H10] (X=Cl (1), Br (2), I (3)) and the dibromo derivative closo-[3-Co(eta5-C5H5)-8,9-Br2-1,2-C2B9H9] (4) are reported. The supramolecular structures of 1, 3, and 4 reveal the existence of intermolecular C--HX--B interactions. The role of these interactions has been investigated through a CSD search and subsequent analysis of the reported crystalline compounds. The results show that halogens become reasonably good hydrogen-bond acceptors when bonded to boron and, in this respect, are comparable in strength to metal-bound halogens.  相似文献   

13.
A bridge between classical organic polycyclic aromatic hydrocarbons (PAH) and closo borohydride clusters is established by showing that they share a common origin regulated by the number of valence electrons in an electronic confined space. Application of the proposed electronic confined space analogy (ECSA) method to archetypal PAHs leads to the conclusion that the 4n+2 Wade–Mingos rule for three‐dimensional closo boranes is equivalent to the (4n+2)π Hückel rule for two‐dimensional PAHs. More importantly, use of ECSA allows design of new interesting fused closo boranes which can be a source of inspiration for synthetic chemists.  相似文献   

14.
An efficient synthetic route to 2‐ and 2,7‐substituted pyrenes is described. The regiospecific direct C? H borylation of pyrene with an iridium‐based catalyst, prepared in situ by the reaction of [{Ir(μ‐OMe)cod}2] (cod=1,5‐cyclooctadiene) with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, gives 2,7‐bis(Bpin)pyrene ( 1 ) and 2‐(Bpin)pyrene ( 2 , pin=OCMe2CMe2O). From 1 , by simple derivatization strategies, we synthesized 2,7‐bis(R)‐pyrenes with R=BF3K ( 3 ), Br ( 4 ), OH ( 5 ), B(OH)2 ( 6 ), and OTf ( 7 ). Using these nominally nucleophilic and electrophilic derivatives as coupling partners in Suzuki–Miyaura, Sonogashira, and Buchwald–Hartwig cross‐coupling reactions, we obtained 2,7‐bis(R)‐pyrenes with R=(4‐CO2C8H17)C6H4 ( 8 ), Ph ( 9 ), C≡CPh ( 10 ), C≡C[{4‐B(Mes)2}C6H4] ( 11 ), C≡CTMS ( 12 ), C≡C[(4‐NMe2)C6H4] ( 14 ), C≡CH ( 15 ), N(Ph)[(4‐OMe)C6H4] ( 16 ), and R=OTf, R′=C≡CTMS ( 13 ). Lithiation of 4 , followed by reaction with CO2, yielded pyrene‐2,7‐dicarboxylic acid ( 17 ), whilst borylation of 2‐tBu‐pyrene gave 2‐tBu‐7‐Bpin‐pyrene ( 18 ) selectively. By similar routes (including Negishi cross‐coupling reactions), monosubstituted 2‐R‐pyrenes with R=BF3K ( 19 ), Br ( 20 ), OH ( 21 ), B(OH)2 ( 22 ), [4‐B(Mes)2]C6H4 ( 23 ), B(Mes)2 ( 24 ), OTf ( 25 ), C≡CPh ( 26 ), C≡CTMS ( 27 ), (4‐CO2Me)C6H4 ( 28 ), C≡CH ( 29 ), C3H6CO2Me ( 30 ), OC3H6CO2Me ( 31 ), C3H6CO2H ( 32 ), OC3H6CO2H ( 33 ), and O(CH2)12Br ( 34 ) were obtained from 2 . These derivatives are of synthetic and photophysical interest because they contain donor, acceptor, and conjugated substituents. The crystal structures of compounds 4 , 5 , 7 , 12 , 18 , 19 , 21 , 23 , 26 , and 28 – 31 have also been obtained from single‐crystal X‐ray diffraction data, revealing a diversity of packing modes, which are described in the Supporting Information. A detailed discussion of the structures of 1 and 2 , their polymorphs, solvates, and co‐crystals is reported separately.  相似文献   

15.
A bridge between classical organic polycyclic aromatic hydrocarbons (PAH) and closo borohydride clusters is established by showing that they share a common origin regulated by the number of valence electrons in an electronic confined space. Application of the proposed electronic confined space analogy (ECSA) method to archetypal PAHs leads to the conclusion that the 4n+2 Wade–Mingos rule for three‐dimensional closo boranes is equivalent to the (4n+2)π Hückel rule for two‐dimensional PAHs. More importantly, use of ECSA allows design of new interesting fused closo boranes which can be a source of inspiration for synthetic chemists.  相似文献   

16.
Ynones are useful substrates for transition‐metal‐mediated synthesis. The AuI‐catalyzed 1,3‐O‐transposition is an important reaction of ynones. Recently, an efficient CuI‐catalyzed synthesis of trisubstituted Z‐enol esters via interrupting the traditional 1,3‐O‐transposition reaction of ynones was reported by Zhu's group. Herein, density functional theory studies disclosed that the hydrogen bond formed by carboxylic acid plays an important role for the reactivity and selectivity in this novel reaction. A qualitative rule was also found to explain the substituent effect in the ynone substrate, and this is consistent with experiments. The AuI‐catalyst and CuI‐catalyst were further compared to interpret the essential cause of why the AuI‐catalyst prefers the 1,3‐O‐transpostion reaction. These conclusions might be helpful for the rational design of reactions of ynones.  相似文献   

17.
Reaction conditions for the C? C cross‐coupling of O6‐alkyl‐2‐bromo‐ and 2‐chloroinosine derivatives with aryl‐, hetaryl‐, and alkylboronic acids were studied. Optimization experiments with silyl‐protected 2‐bromo‐O6‐methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4‐dioxane as the best conditions for these reactions (dcpf=1,1′‐bis(dicyclohexylphosphino)ferrocene). Attempted O6‐demethylation, as well as the replacement of the C‐6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd‐cleavable groups such that C? C cross‐coupling and O6‐deprotection could be accomplished in a single step. Thus, inosine 2‐chloro‐O6‐allylinosine was chosen as the substrate and, after re‐evaluation of the cross‐coupling conditions with 2‐chloro‐O6‐methylinosine as a model substrate, one‐step C? C cross‐coupling/deprotection reactions were performed with the O6‐allyl analogue. These reactions are the first such examples of a one‐pot procedure for the modification and deprotection of purine nucleosides under C? C cross‐coupling conditions.  相似文献   

18.
19.
20.
Research on structure–property relationships in distyrylarylene derivatives is far behind their wide applications in optoelectronic devices due to the absence of crystal structure information. Herein, the single crystals of 4,4′‐bis(2‐thienylvinyl)biphenyl ( 1 ) and 4,4′‐bis(2‐thieno[3,2‐b]thienylvinyl)biphenyl ( 2 ) were successfully grown by the vapor transport method. Both molecules adopt the typical herringbone packing motif. However, the intermolecular C? H???π interaction in compound 2 is much stronger than that in compound 1 . The correlations of interchain interaction with film morphology, optical and electronic properties were studied. Compound 2 formed higher crystalline films with (001) and (111) orientations. The organic field‐effect transistor properties of both materials were investigated. Compound 2 showed better performance with a hole mobility higher than 0.01 cm2 V?1 s?1 and an on/off current ratio over 106. These results reveal that the intensity of C? H???π interactions can exert dramatic influences on the optical and electronic properties of distyrylarylene‐based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号