共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Surface modification with organic dye molecules is a useful strategy to manipulate the optical properties of lanthanide‐doped nanoparticles (LnNPs). It enables energy transfer between dyes and LnNPs, which provides unprecedented possibilities to gain new optical phenomena from the dye–LnNPs composite systems. This has led to a wide range of emerging applications, such as biosensing, drug delivery, gene targeting, information storage, and photon energy conversion. Herein, the mechanism of energy transfer and the structural‐dependent energy‐transfer properties in dye‐coupled LnNPs are reviewed. The design strategies for achieving effective dye–LnNP functionalization are presented. Recent advances in these composite nanomaterials in biomedicine and energy conversion applications are highlighted. 相似文献
4.
Satoshi Yamamoto Angel Zhang Prof. Dr. Martin J. Stillman Prof. Dr. Nagao Kobayashi Prof. Dr. Mutsumi Kimura 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(52):18760-18768
Two low‐symmetry phthalocyanines (Pcs) substituted with thiophene units at the non‐peripheral (α) and peripheral (β) positions were synthesized and their optical, electronic‐structure, and electrochemical properties were investigated. The substitution of thiophene units at the α positions of the phthalocyanine skeleton resulted in a red shift of the Q band and significantly modified the molecular‐orbital electronic distributions just below the HOMO and just above the LUMO, with distortion of the typical Gouterman four‐orbital arrangement of MOs. Two amphiphilic Ω‐shaped ZnPcs ( αPcS1 and αPcS2 ) bearing a π‐conjugated side chain with an adsorption site at an α position of the Pc macrocycle were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs). The absorption spectra of αPcS1 and αPcS2 showed red shifted Q bands and a broad band from 350 to 550 nm assignable to the intramolecular charge‐transfer transition from the ZnPc core to the side chains. Time‐dependent DFT calculations provided a clear interpretation of the effect of the thiophene conjugation on the typical phthalocyanine core π MOs. Compound αPcS1 was used as a light‐harvesting dye on a TiO2 electrode for a DSSC, which showed a panchromatic response in the range 400–800 nm with a power conversion efficiency of 5.5 % under one‐sun conditions. 相似文献
5.
6.
Assessment of Luminescent Downshifting Layers for the Improvement of Light‐Harvesting Efficiency in Dye‐Sensitized Solar Cells 下载免费PDF全文
Zahra Hosseini Prof. Eric Wei‐Guang Diau Dr. Khashayar Mehrany Dr. Nima Taghavinia 《Chemphyschem》2014,15(17):3791-3799
Luminescence downshifting (LDS) of light can be a practical photon management technique to compensate the narrow absorption band of high‐extinction‐coefficient dyes in dye‐sensitized solar cells (DSSCs). Herein, an optical analysis on the loss mechanisms in a reflective LDS (R‐LDS)/DSSC configuration is reported. For squaraine dye (550–700 nm absorption band) and CaAlSiN3:Eu2+ LDS material (550–700 nm emission band), the major loss channels are found to be non‐unity luminescence quantum efficiency (QE) and electrolyte absorption. By using an ideal LDS layer (QE=100 %), a less absorbing electrolyte (Co‐based), and antireflection coatings, approximately 20 % better light harvesting is obtained. If the absorption/emission band of dye/LDS is shifted to 800 nm, a maximal short‐circuit current density (Jsc) of 22.1 mA cm?2 can be achieved. By putting the LDS layer in front of the DSSC (transmissive mode), more significant loss channels are observed, and hence a lower overall efficiency than the R‐LDS configuration. 相似文献
7.
A Metal‐Free N‐Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dye‐Sensitized Solar Cells 下载免费PDF全文
Zhaoyang Yao Dr. Min Zhang Dr. Renzhi Li Lin Yang Yongna Qiao Prof. Peng Wang 《Angewandte Chemie (International ed. in English)》2015,54(20):5994-5998
Reported are two highly efficient metal‐free perylene dyes featuring N‐annulated thienobenzoperylene (NTBP) and N‐annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal‐free organic dye derived from the NTCP segment was used for a dye‐sensitized solar cell which attained a power conversion efficiency of 12 % under an irradiance of 100 mW cm?2, simulated air mass global (AM1.5G) sunlight. 相似文献
8.
Dr. Xi‐Yan Dong Mei Zhang Ru‐Bo Pei Qian Wang Dong‐Hui Wei Prof. Shuang‐Quan Zang Prof. Yao‐Ting Fan Prof. Thomas C. W. Mak 《Angewandte Chemie (International ed. in English)》2016,55(6):2073-2077
A crystalline coordination polymer (CP) photocatalyst (Cu‐RSH) which combines redox‐active copper centers with photoactive rhodamine‐derived ligands remains stable in acid and basic solutions from pH 2 to 14, and efficiently catalyzes dihydrogen evolution at a maximum rate of 7.88 mmol g?1 h?1 in the absence of a mediator and a co‐catalyst. Cyclic voltammetry, control experiments, and DFT calculations established that copper nodes with open coordination sites and favorable redox potentials, aided by spatially ordered stacking of rhodamine‐based linkers, account for the high catalytic performance of Cu‐RSH. Emission quenching, time‐resolved fluorescence decay, and transient photocurrent experiments disclosed the charge separation and transfer process in the catalytic system. The present study demonstrates the potential of crystalline copper CPs for the practical utilization of light. 相似文献
9.
Enhanced Charge Separation Efficiency in Pyridine‐Anchored Phthalocyanine‐Sensitized Solar Cells by Linker Elongation 下载免费PDF全文
Takuro Ikeuchi Dr. Saurabh Agrawal Dr. Masayuki Ezoe Prof. Dr. Shogo Mori Prof. Dr. Mutsumi Kimura 《化学:亚洲杂志》2015,10(11):2347-2351
A series of zinc phthalocyanine sensitizers ( PcS22 – 24 ) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye‐sensitized solar cells. The pyridine‐anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident‐photon to current‐conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited‐state molecular orbital of the sensitizer and the orbitals of TiO2. Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker‐length dependence of the IPCE. The red‐absorbing PcS23 is applied for co‐sensitization with a carboxyl‐anchor organic dye D131 that has a complementary spectral response. The site‐selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible‐light region of sun light. 相似文献
10.
11.
Prof. Dr. Mutsumi Kimura Hirotaka Nomoto Hiroyuki Suzuki Takuro Ikeuchi Dr. Hiroyuki Matsuzaki Dr. Takuro N. Murakami Dr. Akihiko Furube Dr. Naruhiko Masaki Dr. Matthew J. Griffith Prof. Dr. Shogo Mori 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(23):7496-7502
A series of zinc–phthalocyanine sensitizers ( PcS16 – 18 ) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption‐site structures on the solar‐cell performances in zinc–phthalocyanine based dye‐sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time‐resolved fluorescence spectroscopy. The zinc–phthalocyanine sensitizer PcS18 , possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6‐diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light‐harvesting dye on a TiO2 electrode under one simulated solar condition. 相似文献
12.
Min Hao Guangping Sun Minzan Zuo Zuqiang Xu Yuan Chen Xiao‐Yu Hu Leyong Wang 《Angewandte Chemie (International ed. in English)》2020,59(25):10095-10100
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium. 相似文献
13.
Young‐Hwan Jeong Minjung Son Hongsik Yoon Pyosang Kim Do‐Hyung Lee Prof. Dongho Kim Prof. Woo‐Dong Jang 《Angewandte Chemie (International ed. in English)》2014,53(27):6925-6928
An artificial light‐harvesting multiporphyrin dendrimer ( 8PZnPFB ) composed of a focal freebase porphyrin ( PFB ) with eight zinc(II) porphyrin ( PZn ) wings exhibited unique photophysical property switching in response to specific guest molecule binding. UV/Vis titration studies indicated stable 1:2 host–guest complex formation between 8PZnPFB and meso‐tetrakis(4‐pyridyl)‐porphyrin ( TPyP ) for which the first and second association constants were estimated to be >108 M ?1 and 3.0×107 M ?1, respectively. 8PZnPFB originally shows 94 % energy transfer efficiency from PZn to the focal PFB . By the formation of the host–guest complex ( 8PZnPFB? 2 TPyP ) the emission intensity of 8PZnPFB is significantly decreased, and an ultrafast charge separation state is generated. The energy transfer process from PZn wings to the PFB core in 8PZnPFB is almost entirely switched to an electron transfer process by the formation of 8PZnPFB? 2 TPyP . 相似文献
14.
Jun‐Ho Yum Dr. Daniel P. Hagberg Soo‐Jin Moon Karl Martin Karlsson Tannia Marinado Licheng Sun Prof. Anders Hagfeldt Prof. Mohammad K. Nazeeruddin Dr. Michael Grätzel Prof. 《Angewandte Chemie (International ed. in English)》2009,48(9):1576-1580
Finely tuned : A stable dye‐sensitized solar cell that contains a molecularly engineered organic dye has been prepared. The efficiency of the cell remains at 90 % after 1000 h of light soaking at 60 °C. The remarkable stability of the cell is also reflected in the open‐circuit voltage value (Voc), short‐circuit photocurrent‐density value (Jsc), and the fill factor, which also show barely no decline (see picture).
15.
Structure–Performance Correlations of Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety for Dye‐Sensitized Solar Cells 下载免费PDF全文
Dr. Sie‐Rong Li Dr. Chuan‐Pei Lee Po‐Fan Yang Chia‐Wei Liao Mandy M. Lee Dr. Wei‐Lin Su Chun‐Ting Li Prof. Dr. Hao‐Wu Lin Prof. Dr. Kuo‐Chuan Ho Dr. Shih‐Sheng Sun 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(32):10052-10064
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes. 相似文献
16.
The knowledge of dye‐sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs. 相似文献
17.
K. Venkata Rao Dr. K. K. R. Datta Prof. Muthusamy Eswaramoorthy Dr. Subi. J. George 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(8):2184-2194
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process. 相似文献
18.
Maximilian Nothaft Steffen Höhla Dr. Aurélien Nicolet Prof. Dr. Fedor Jelezko Prof. Dr. Norbert Frühauf Prof. Dr. Jens Pflaum Prof. Dr. Jörg Wrachtrup 《Chemphyschem》2011,12(14):2590-2595
Photoluminescence quenching of single dibenzoterrylene (DBT) dye molecules in a polymeric organic light‐emitting diode was utilized to analyze the current dynamics at nanometer resolution. The quenching mechanism of single DBT molecules results from an increase in the triplet‐state population induced by charge carrier recombination on individual guest molecules. As a consequence of the long triplet‐state relaxation time, its population results in a reduced photoluminescence of the dispersed fluorescent dyes. From the decrease in photoluminescence together with photon correlation measurements, we could quantify the local current density and its time‐dependent evolution in the vicinity of the single‐molecule probe. This optical technique establishes a non‐invasive approach to map the time‐resolved current density in organic light‐emitting diodes on the nanometer scale. 相似文献
19.
Fabrice Odobel Dr. Marjorie Séverac Dr. Yann Pellegrin Dr. Errol Blart Dr. Céline Fosse Dr. Caroline Cannizzo Dr. Cédric R. Mayer Dr. Kristopher J. Elliott Anthony Harriman Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(13):3130-3138
Ultrafast discharge of a single‐electron capacitor: A variety of intramolecular electron‐transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single‐electron events. (et=electron transfer, cr=charge recombination, csr=charge‐shift reaction, PER=perylene, POM=polyoxometalate).
20.
Xiaohu Zhang Uahengo Veikko Jin Mao Dr. Ping Cai Prof. Tianyou Peng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(38):12103-12111
Highly efficient, visible light induced photocatalytic H2 production was achieved over a TiO2 system sensitized by binuclear RuII bipyridyl (bpy) complex [Ru2(bpy)4(BL)](ClO4)2 (BL=bridging ligand) without Pt loading, which is almost unaffected by pH in aqueous solution in the wide range from pH 5.00 to 10.50, although the dye molecules can only be loosely attached to TiO2 due to the absence of terminal carboxyl groups. The photocatalyst shows remarkable long‐term stability and reproducibility of H2 evolution even after exchanging the aqueous triethanolamine solution. The amount of H2 evolved over 100 mg of photocatalyst in 27 h of irradiation corresponds to a turnover number of about 75 340, and the apparent quantum yields are estimated to be 16.8 and 7.3 % under 420 and 475 nm monochromatic light irradiation, respectively. A comparative study shows that the loosely attached dye [Ru2(bpy)4(BL)](ClO4)2 has higher photosensitization efficiency than tightly linked dyes with terminal carboxyl groups, such as [Ru2(dcbpy)4(BL)](ClO4)2 and N719. It can be rationalized by their different coordination, physicochemical, electron‐injection, and back‐transfer properties. 相似文献