首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This article analyzes the interplay between lone pair–π (lp–π) or anion–π interactions and halogen‐bonding interactions. Interesting cooperativity effects are observed when lp/anion–π and halogen‐bonding interactions coexist in the same complex, and they are found even in systems in which the distance between the anion and halogen‐bond donor molecule is longer than 9 Å. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods. Bader′s theory of “atoms in molecules” is used to characterize the interactions and to analyze their strengthening or weakening depending upon the variation of charge density at critical points. The physical nature of the interactions and cooperativity effects are studied by means of molecular interaction potential with polarization partition scheme. By taking advantage of all aforementioned computational methods, the present study examines how these interactions mutually influence each other. Additionally, experimental evidence for such interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

3.
The interaction between a noble gas atom and an aromatic π‐electron system, which mainly originates from the London dispersion force, is very weak and has not attracted enough attention yet. Herein, we reported a type of notably enhanced aerogen–π interaction between cation–π systems and noble gas atoms. The binding strength of a divalent cation–π system with a xenon atom is comparable to a moderate hydrogen bond (up to ca. 7 kcal mol?1), whereas krypton and argon atoms produce slightly weaker interactions. Energy‐decomposition analysis reveals that the induction interaction is responsible for the stabilization of divalent cation–π?Xe species besides the dispersion interaction. Our results might be helpful to increase the understanding of some unsolved mysteries of aerogens.  相似文献   

4.
5.
6.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

7.
Herein, we report a high‐level theoretical study (SCS‐RI‐MP2(full)/aug‐cc‐pVTZ) examining the stacking affinity of 1,3,5‐triethynylbenzene. The stacking properties of this compound are compared to those of benzene and 1,3,5‐trifluorobenzene. The results indicate that the ethynyl substituent improves the stacking affinity of the arene, since the binding energies for the stacked ethynyl‐substituted arene dimers are higher than those of both benzene and the fluoro‐substituted arene. This interesting behaviour has been studied by examining the energetics, geometries and electron charge density features of the complexes. A query in the Cambridge Structural Database returned several X‐ray crystal structures containing π–π stacking interactions of 1,3,5‐triethynylaryls that strongly agree with the theoretical results.  相似文献   

8.
Eight complexes of various aromatic molecules with water have been studied theoretically at the local Møller–Plesset 2nd order theory (LMP2)/aug‐cc‐pVTZ(‐f)//LMP2/6‐31+G* level of theory. Two types of complexes can be formed, depending on the electronic structure of aromatic molecules. Donor hydrocarbons form A‐type complexes, while aromatics bearing electron‐withdrawing substituents form B‐type complexes. A‐type complexes are stabilized due to π–H interactions with the OH bond pointing to the aromatic molecule plane, while B‐type complexes have geometry with the oxygen atom pointing to the aromatic molecule plane stabilized by the interaction of highest occupied molecular orbital (HOMO) of water molecule with π* orbitals of the aromatics. It has been found that a (? HOMO–lowest unoccupied molecular orbital (LUMO)/2 value of aromatic molecule, which can be called “molecular electronegativity,” is useful to predict the type of complex formed by aromatic molecule and water. Aromatic hydrocarbons with “molecular electronegativity” of <0.15 tend to form A‐type complexes, while aromatic molecules with “molecular electronegativity” of <0.15 a.u. form B‐type complexes. The binding energy of water–aromatic complexes undergoes a minimum in the area of switching from A‐type to B type complexes, which can be rationalize in terms of frontier orbital interactions. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
The interplay between pnicogen bonds and cation–π interactions has been investigated at the MP2/aug‐cc‐pVDZ level. Interesting cooperative and diminutive effects are observed when pnicogen bonds and cation–π interactions coexist in the same complex. These effects have been analyzed in terms of the structural, energetic, and charge‐transfer properties of the complexes. The variations in electron density at critical points of the intermolecular bond have been used to analyze bond strengthening or weakening. The nature of the interactions and the mechanisms of cooperative and diminutive effects have been studied by means of symmetry‐adapted perturbation theory and molecular electrostatic potentials.  相似文献   

10.
The nature of halogen bonds of the Y?X‐?‐π(C6H6) type (X, Y=F, Cl, Br, and I) have been elucidated by using the quantum theory of atoms in molecules (QTAIM) dual‐functional analysis (QTAIM‐DFA), which we proposed recently. Asterisks (?) emphasize the presence of bond‐critical points (BCPs) in the interactions in question. Total electron energy densities, Hb( r c), are plotted versus Hb( r c)?Vb( r c)/2 [=(?2/8m)?2ρb( r c)] for the interactions in QTAIM‐DFA, in which Vb( r c) are potential energy densities at the BCPs. Data for perturbed structures around fully optimized structures were used for the plots, in addition to those of the fully optimized ones. The plots were analyzed by using the polar (R, θ) coordinate for the data of fully optimized structures with (θp, κp) for those that contained the perturbed structures; θp corresponds to the tangent line of the plot and κp is the curvature. Whereas (R, θ) corresponds to the static nature, (θp, κp) represents the dynamic nature of the interactions. All interactions in Y?X‐?‐π(C6H6) are classified by pure closed‐shell interactions and characterized to have vdW nature, except for Y?I‐?‐π(C6H6) (Y=F, Cl, Br) and F?Br‐?‐π(C6H6), which have typical hydrogen‐bond nature without covalency. I?I‐?‐π(C6H6) has a borderline nature between the two. Y?F‐?‐π(C6H6) (Y=Br, I) were optimized as bent forms, in which Y‐?‐π interactions were detected. The Y‐?‐π interactions in the bent forms are predicted to be substantially weaker than those in the linear F?Y‐?‐π(C6H6) forms.  相似文献   

11.
The structural and electronic consequences of π–π and C?H/π interactions in two alkoxy‐substituted 1,8‐bis‐ ((propyloxyphenyl)ethynyl)naphthalenes are explored by using X‐ray crystallography and electronic structure computations. The crystal structure of analogue 4 , bearing an alkoxy side chain in the 4‐position of each of the phenyl rings, adopts a π‐stacked geometry, whereas analogue 8 , bearing alkoxy groups at both the 2‐ and the 5‐positions of each ring, has a geometry in which the rings are splayed away from a π‐stacked arrangement. Symmetry‐adapted perturbation theory analysis was performed on the two analogues to evaluate the interactions between the phenylethynyl arms in each molecule in terms of electrostatic, steric, polarization, and London dispersion components. The computations support the expectation that the π‐stacked geometry of the alkoxyphenyl units in 4 is simply a consequence of maximizing π–π interactions. However, the splayed geometry of 8 results from a more subtle competition between different noncovalent interactions: this geometry provides a favorable anti‐alignment of C?O bond dipoles, and two C?H/π interactions in which hydrogen atoms of the alkyl side chains interact favorably with the π electrons of the other phenyl ring. These favorable interactions overcome competing π–π interactions to give rise to a geometry in which the phenylethynyl substituents are in an offset, unstacked arrangement.  相似文献   

12.
13.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

14.
Halogen bonding is a noncovalent interaction between a halogen atom and a nucleophilic site. Interactions involving the π electrons of aromatic rings have received, up to now, little attention, despite the large number of systems in which they are present. We report binding energies of the interaction between either NCX or PhX (X=F, Cl, Br, I) and the aromatic benzene system as determined with the coupled cluster with perturbative triple excitations method [CCSD(T)] extrapolated at the complete basis set limit. Results are compared with those obtained by Møller–Plesset perturbation theory to second order (MP2) and density functional theory (DFT) calculations by using some of the most common functionals. Results show the important role of DFT in studying this interaction.  相似文献   

15.
Although the role of intermolecular aromatic π–π interactions in the self‐assembly of di‐l ‐phenylalanine (l ‐Phe‐l ‐Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π–π interactions on the morphology of the self‐assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π–π interactions is investigated for FF and analogous alanine (Ala)‐containing dipeptides, namely, l ‐Phe‐l ‐Ala (FA) and l ‐Ala‐l ‐Phe (AF). The results reveal that these dipeptides not only form self‐assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π–π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side‐chain interactions (aromatic–aliphatic or aliphatic–aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self‐assembled structure. The current results emphasise that intramolecular aromatic π–π interaction may not be essential to induce self‐assembly in smaller peptides, and π (aromatic)–alkyl or alkyl–π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self‐assembled structures.  相似文献   

16.
The directionality of interaction of electron‐deficient π systems with spherical anions (e.g,. halides) can be controlled by secondary effects like NH or CH hydrogen bonding. In this study a series of pentafluorophenyl‐substituted salts with polyhalide anions is investigated. The compounds are obtained by aerobic oxidation of the corresponding halide upon crystallization. Solid‐state structures reveal that in bromide 2 , directing NH–anion interactions position the bromide ion in an η1‐type fashion over but not in the center of the aromatic ring. The same directing forces are effective in corresponding tribromide salt 3 . In the crystal, the bromide ion is paneled by four electron‐deficient aromatic ring systems. In addition, compounds 4 and 6 , which have triiodide and the rare tetraiodide dianion as anions, are described. Computational studies reveal that the latter is highly unstable. In the present case it is stabilized by the crystal lattice, for example, by interaction with electron‐deficient π systems.  相似文献   

17.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

18.
The interplay between two important non‐covalent interactions involving aromatic rings (namely anion–π and hydrogen bonding) is investigated. Very interesting cooperativity effects are present in complexes where anion–π and hydrogen bonding interactions coexist. These effects are found in systems where the distance between the anion and the hydrogen‐bond donor/acceptor molecule is as long as ~11 Å. These effects are studied theoretically using the energetic and geometric features of the complexes, which were computed using ab initio calculations. We use and discuss several criteria to analyze the mutual influence of the non‐covalent interactions studied herein. In addition we use Bader’s theory of atoms‐in‐molecules to characterize the interactions and to analyze the strengthening or weakening of the interactions depending upon the variation of the charge density at the critical points.  相似文献   

19.
The ability of several pnicogen sp3 derivatives ZF3 (Z=N, P, As, Sb) to interact with electron‐rich entities by means of the opposite face to the lone pair (lp) is investigated at the RI‐MP2/aug‐cc‐pVQZ level of theory. The strength of the interaction ranges from ?1 to ?87 kJ mol?1, proving its favorable nature, especially when the lp is coordinated to a metal center, whereby the strength of the interaction is significantly enhanced. NBO analysis showed that orbital effects are modest contributors to the global stabilization of the pnicogen σ‐hole bonded complexes studied. Finally, a selection of Cambridge Structural Database examples are shown that demonstrate the impact of this counterintuitive binding mode in the solid state.  相似文献   

20.
Sandwich and T-shaped configurations of substituted benzene dimers were studied by second-order perturbation theory to determine how substituents tune pi-pi interactions. Remarkably, multiple substituents have an additive effect on the binding energy of sandwich dimers, except in some cases when substituents are aligned on top of each other. The energetics of substituted T-shaped configurations are more complex, but nevertheless a simple model that accounts for electrostatic and dispersion interactions (and direct contacts between substituents on one ring and hydrogen atoms on the other), provides a good match to the quantum mechanical results. These results provide insight into the manner by which substituents csan be utilized in supramolecular design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号