首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Supramolecular surface nanostructures have application potential as functional devices. The complex combination of thiolated cyclodextrin, chemisorbed on an Au surface (Au‐S‐CD), with deposited Fe species is studied by secondary ion mass spectrometry. The Fe species are prepared by pulsed laser ablation in water and thermal effusion in vacuum. Using laser ablation in water, the solution of Fe species is dropped on Au‐S‐CD, where mass peaks at 1227 m/z, 1243 m/z, and 1260 m/z are observed and assigned to C42H68O34SNa‐Fe+, C42H68O34SK‐Fe+ together with C42H68O34SNa‐FeO+, and C42H68O34SK‐FeO+, respectively. On the other hand, laser ablation directly linked to the Au‐S‐CD surface results in desorption of CD‐S. Thermal effusion, even with a cooled surface, was negative with respect to the complex observation. Laser ablation results in the formation of a supramolecular host–guest complex of the form Au‐S‐CD‐Fe, and in the formation of an adduct of the form Au‐S‐CD‐FeO.  相似文献   

2.
The interaction of bare iron mono‐ and dications with hydrogen peroxide in the gas phase is studied by ab initio calculations employing the B3LYP/6‐311+G* level of theory. For the monocation, the quartet and sextet coordination complexes Fe(H2O2) are high‐energy isomers that easily interconvert to the more stable iron dihydroxide monocation Fe(OH) and hydrated iron oxide (H2O)FeO+ (quartet) or dissociate into FeOH++OH. (sextet). On the dication surface, however, the order of stabilities is reversed in that Fe(H2O2)2+ (quintet) corresponds to the most stable doubly charged species, while the formal FeIV compounds Fe(OH) and (H2O)FeO2+ are higher in energy.  相似文献   

3.
Reactions of Fe+ and FeL+ [L=O, C4H6, c-C5H6, C5H5, C6H6, C5H4(=CH2)] with thiophene, furan, and pyrrole in the gas phase by using Fourier transform mass spectrometry are described. Fe+, Fe(C5H5)+, and FeC6H 6 + yield exclusive rapid adduct formation with thiophene, furan, and pyrrole. In addition, the iron-diene complexes [FeC4H 6 + and Fe(c-C5H6)+], as well as FeC5H4(=CH2)+ and FeO+, are quite reactive. The most intriguing reaction is the predominant direct extrusion of CO from furan by FeC4H6 +, Fe(c-C5H6)+, and FeC5H4(=CH2)+. In addition, FeC4H 6 + and Fe(c-C5H6)+ cause minor amounts of HCN extrusion from pyrrole. Mechanisms are presented for these CO and HCN extrusion reactions. The absence of CS elimination from thiophene may be due to the higher energy requirements than those for CO extrusion from furan or HCN extrusion from pyrrole. The dominant reaction channel for reaction of Fe(c-C5H6)+ with pyrrole and thiophene is hydrogen-atom displacement, which implies DO(Fa(N5H5)+-C4H4X)>DO(Fe(C5H5)+-H)=46±5 kcal mol?1. DO(Fe+-C4H4S) and DO(Fe+-C4H5N)=DO(Fe+-C4H6)=48±5 kcal mol?1. Finally, 55±5 kcal mol?1=DO(Fe+-C6H6)>DO(Fe+-C4H4O)>DO(Fe+-C2H4)=39.9±1.4 kcal mol?1. FeO+ reacts rapidly with thiophene, furan, and pyrrole to yield initial loss of CO followed by additional neutral losses. DO(Fe+-CS)>DO(Fe+-C4H4S)≈48±5 kcal mol?1 and DO(Fe+-C4H5N)≈48±5 kcal mol?1>DO(Fe+-HCN)>DO(Fe+-C2H4)=39.9±1.4 kcal mil?1.  相似文献   

4.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

5.
An unsymmetrical oxo-bridged diiron(III) complex [Fe2L2(μ-O)], {H2L?=?trans-N,N′-bis-(2hydroxy-1-naphthalidehydene)-cyclohexanediamine} has been synthesized and characterized by various physico-chemical techniques. In the complex, each deprotonated bi-anionic L2? serves as a terminal tetradentate ligand (N2O2) and coordinates to one Fe to form a [FeL]+ unit. Two [FeL]+ units are further linked by an oxo-bridge to construct the binuclear oxo-Fe species with intramolecular Fe–Fe separation of 3.38?Å. Variable-temperature magnetic susceptibility studies revealed a strong antiferromagnetic interaction between two iron centers with J of ?112?cm?1. The interaction of the complex with CT-DNA was studied by various spectroscopic and viscosity measurements, which indicated that the complex could interact with CT-DNA through intercalation. In addition, the complex is able to cleave pBR322 DNA in the presence of H2O2. Furthermore, the interaction of the compound with BSA was also investigated, which indicated that the complex could quench the intrinsic fluorescence of BSA by a static quenching mechanism.  相似文献   

6.
A macrocyclic hexanuclear iron(III) 18-metallacrown-6 complex, [Fe6(C9H6BrN2O3)6(CH3OH)4(H2O)2]?·?7CH3OH?·?4H2O, has been prepared using a trianionic pentadentate ligand N-acetyl-5-bromosalicylhydrazidate, abshz3–, and characterized by X-ray diffraction. The crystal structure contains a neutral 18-membered metallacrown ring consisting of six Fe(III) and six abshz3– ligands. The 18-membered metallacrown ring is formed by combination of six structural moieties, [Fe(III)–N–N]. Due to meridional coordination of ligand to Fe3+, the ligand enforces the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Δ/Λ forms. Methanol and water are linked with Fe1, Fe1A, Fe,3 and Fe3A. The ratios of methanol to water are 0.76?:?0.24 for Fe1 and Fe1A, and 0.30?:?0.70 for Fe3 and Fe3A, which results in four component crystals of metallacrown rings with ratio of 0.168?:?0.072?:?0.532?:?0.228. Antibacterial screening data showed that the iron metallacrown has moderate antimicrobial activity against Bacillus subtilis.  相似文献   

7.
Cerium oxide cluster cations (CemOn+, m=2–16; n=2m, 2m±1 and 2m±2) are prepared by laser ablation and reacted with acetylene (C2H2) in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reactions of stoichiometric CemO2m+ (m=2–6) with C2H2 produce CemO2m?2+ clusters, which indicates a “double‐oxygen‐atom transfer” reaction CemO2m++C2H2→CemO2m?2++(CHO)2 (ethanedial). A single‐oxygen‐atom transfer reaction channel is also identified as CemO2m++C2H2→CemO2m?1++C2H2O (at least for m=2 and 3). Density functional theory calculations are performed to study reaction mechanisms of Ce2O4++C2H2, and the calculated results confirm that both the single‐ and double‐oxygen‐atom transfer channels are thermodynamically and kinetically favourable.  相似文献   

8.
9.
The reactions of Fe(CO)5 or Fe3(CO)12 with NaBEt3H or KB[CH(CH3)C2H5]3H, respectively and treatment of the resulting carbonylates M2Fe(CO)4, M = Na, K with elemental selenium in appropriate ratios lead to the formation of M2[Fe2(CO)6(μ‐Se)2]. Subsequent reactions with organo halides or the complex fragment cpFe(CO)2+, cp = η5‐C5H5 afforded the selenolato complexes [Fe2(CO)6(μ‐SeR)2], R = CH2SiMe3 ( 1 ), CH2Ph ( 2 ), p‐CH2C6H4NO2 ( 3 ), o‐CH2C6H4CH2 ( 4 ) and cpFe(CO)2+ ( 5 ) in moderate to good yields. A similar reaction employing Ru3(CO)12, Se and p‐O2NC6H4CH2Br leads to the formation of the corresponding organic diselenide. The X‐ray structures of 1 , 3 , 4 and 5 were determined and revealed butterfly structures of the Fe2Se2 cores. The substituents in 1 , 3  and 5 adopt different conformations depending on their steric demand. In 4 , the conformation is fixed because of the chelate effect of the ligand. The Fe–Se bond lengths lie in the range 235 to 240 pm, with corresponding Fe–Fe bond lengths of 254 to 256 pm. The 77Se NMR data of the new complexes are discussed and compared with the corresponding data of related complexes.  相似文献   

10.
The iron(II) complexes [Fe(L)(MeCN)3](SO3CF3)2 (L are two derivatives of tris(2-pyridyl)-based ligands) have been synthesized as models for cysteine dioxygenase (CDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and the Fe−Npy bond lengths [1.953(4)–1.972(4) Å] are similar to those in the Cys-bound FeII-CDO; Fe−NHis: 1.893–2.199 Å. The iron(II) centers of the model complexes exhibit relatively high FeIII/II redox potentials (E1/2=0.988–1.380 V vs. ferrocene/ferrocenium electrode, Fc/Fc+), within the range for O2 activation and typical for the corresponding nonheme iron enzymes. The reaction of in situ generated [Fe(L)(MeCN)(SPh)]+ with excess O2 in acetonitrile (MeCN) yields selectively the doubly oxygenated phenylsulfinic acid product. Isotopic labeling studies using 18O2 confirm the incorporation of both oxygen atoms of O2 into the product. Kinetic and preliminary DFT studies reveal the involvement of an FeIII peroxido intermediate with a rhombic S= FeIII center (687–696 nm; g≈2.46–2.48, 2.13–2.15, 1.92–1.94), similar to the spectroscopic signature of the low-spin Cys-bound FeIIICDO (650 nm, g≈2.47, 2.29, 1.90). The proposed FeIII peroxido intermediates have been trapped, and the O−O stretching frequencies are in the expected range (approximately 920 and 820 cm−1 for the alkyl- and hydroperoxido species, respectively). The model complexes have a structure similar to that of the enzyme and structural aspects as well as the reactivity are discussed.  相似文献   

11.
Laser-desorbed peptide neutral molecules were allowed to react with Fe+ in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe+ ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne+. Prior to reaction with laser-desorbed peptide molecules, Fe+ ions undergo 20–100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe+ ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe+] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.  相似文献   

12.
Reduction of carbon dioxide by a diiron(I) complex gives μ‐carbonato‐κ3O:O′,O′′‐bis{[2,2,6,6‐tetramethyl‐3,5‐bis(2,4,6‐triisopropylphenyl)heptane‐2,5‐diiminate(1−)‐κ2N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent molecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2‐coordinated to diketiminate ligands, but η1‐ and η2‐coordinated to the bridging carbonate ligand. Thus, one FeII center is three‐coordinate and the other is four‐coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four‐coordinate FeII center and parallel to the plane of the three‐coordinate FeII center.  相似文献   

13.
The benchmark inclusion complexes formed by α‐cyclodextrin (αCD) with alkali‐metal cations are investigated under isolated conditions in the gas phase. The relative αCD‐M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry, infrared action spectroscopy and quantum chemical computations. Solvent‐free laser desorption measurements reveal a trend of decreasing stability of the isolated complexes with increasing size of the cation guest. The experimental infrared spectra are qualitatively similar for the complexes with the four cations investigated, and are consistent with the binding of the cation within the primary face of the cyclodextrin, as predicted by the quantum computations (B3LYP/6‐31+G*). The inclusion of the quantum‐chemical cation disrupts the C6 symmetry of the free cyclodextrin to provide the optimum coordination of the cations with the ‐CH2OH groups in C1, C2 or C3 symmetry arrangements that are determined by the size of the cation.  相似文献   

14.
Solid state photolysis of alkali tris(malonato)ferrates(III), i.e., M3[Fe(CH2C2O4)3]xH2O (M=Li, Na, K, NH4) has been studied employing Mössbauer, infrared and reflectance spectroscopic techniques. The complexes were irradiated for 300 hours using a medium pressure mercury vapour lamp of 250 W, Photodecomposition led to the formation of an iron(II) intermediate, M2[FeII(CH2C2O4)2(H2O)2] (M=Li, Na, K) which on prolonged standing in air oxidized to M[FeIII(CH2C2O4)2(H2O)2]. However, in case of ammonium complex, FeIICH2C2O4·2H2O once formed remained stable. The extent of photoreduction showed the sequence: NH4, K>Li>Na. The results have been compared with those of alkali tris (oxalato) ferrates(III).  相似文献   

15.
采用共沉淀法制备了系列不同Mg/Fe/Al配比MgFeAl-HTLcs前驱体,经焙烧、浸渍K改性、二次焙烧后用于CO加氢反应。采用N2吸附-脱附、SEM、TG、XRD、H2-TPR、XPS等手段对催化剂进行了表征。结果表明,共沉淀法制备的不同配比MgFeAl-HTLcs类水滑石前躯体均具有典型层状结构;焙烧后生成MgO、Fe2O3以及少量MgFeAlO4物相,三组元间相互作用增强,反应后以MgCO3和Fe3O4物相为主,同时出现较弱的Fe5C2相;K改性后发生结构重构,热稳定性增强,且随Al含量增加,比表面积显著单调下降;与K/Mg-Fe相比,K/Mg-Fe-Al样品中Fe2O3到Fe3O4的还原受到抑制;二次焙烧后,反应前表面相对富Fe,反应后表面富K。在CO加氢反应中,K/Mg-Fe-Al系列催化剂均表现出较高的反应活性以及烯烃选择性,随Fe/Al配比相对增加,C5+含量呈降低趋势,O/P值增加;与K/1.5Mg-0.67Fe相比,K/1.5Mg-0.67Fe-0.33Al催化剂C5+含量由22.17%降至10.90%,C=2-4含量由40.98%提高至47.28%。  相似文献   

16.
The reaction of the μ3‐oxido‐centred trinuclear isobutyrate cluster [Fe3O(O2CCHMe2)6(H2O)3]+ with an excess of phenol (PhOH) in chloroform produces a novel octanuclear FeIII cluster, cyclo‐tetra‐μ2‐hydroxido‐dodeca‐μ2‐isobutyrato‐κ24O:O′‐octa‐μ2‐phenolato‐κ16O:O′‐octairon(III) phenol hexasolvate monohydrate, [Fe8(C4H7O2)12(C6H5O)8(OH)4]·6C6H5OH·H2O. The neutral cluster is located about a centre of inversion and consists of a planar ring of eight FeIII centres with two types of bridges between adjacent Fe atoms: each Fe atom is bridged to one of its neighbours by a μ‐hydroxide and two 1,3‐bridging carboxylates, or by two phenolate and one 1,3‐bridging isobutyrate ligand. The cavity within the {Fe8} wheel is occupied by a disordered water molecule. Intermolecular O—H...O hydrogen bonds and C—H...π interactions connect the clusters and the phenol solvent molecules to form a three‐dimensional network.  相似文献   

17.
We have measured the synchrotron‐induced photofragmentation of isolated 2‐deoxy‐D ‐ribose molecules (C5H10O4) at four photon energies, namely, 23.0, 15.7, 14.6, and 13.8 eV. At all photon energies above the molecule′s ionization threshold we observe the formation of a large variety of molecular cation fragments, including CH3+, OH+, H3O+, C2H3+, C2H4+, CHxO+ (x=1,2,3), C2HxO+ (x=1–5), C3HxO+ (x=3–5), C2H4O2+, C3HxO2+ (x=1,2,4–6), C4H5O2+, C4HxO3+ (x=6,7), C5H7O3+, and C5H8O3+. The formation of these fragments shows a strong propensity of the DNA sugar to dissociate upon absorption of vacuum ultraviolet photons. The yields of particular fragments at various excitation photon energies in the range between 10 and 28 eV are also measured and their appearance thresholds determined. At all photon energies, the most intense relative yield is recorded for the m/q=57 fragment (C3H5O+), whereas a general intensity decrease is observed for all other fragments— relative to the m/q=57 fragment—with decreasing excitation energy. Thus, bond cleavage depends on the photon energy deposited in the molecule. All fragments up to m/q=75 are observed at all photon energies above their respective threshold values. Most notably, several fragmentation products, for example, CH3+, H3O+, C2H4+, CH3O+, and C2H5O+, involve significant bond rearrangements and nuclear motion during the dissociation time. Multibond fragmentation of the sugar moiety in the sugar–phosphate backbone of DNA results in complex strand lesions and, most likely, in subsequent reactions of the neutral or charged fragments with the surrounding DNA molecules.  相似文献   

18.
The processes of H3O+ production from alcohols (ethanol, 2‐propanol, 1‐propanol, 2‐butanol) and ethers (diethyl ether and ethyl methyl ether), and their deuterium‐substituted species, by intense laser fields (800 nm, 100 fs, ~1 × 1014 W/cm) were investigated through time‐of‐flight (TOF) mass spectrometry. H3O+ formation was observed for all these compounds except for ethyl methyl ether. From the analysis of TOF signals of H(3?n)DnO+ (n = 0, 1, 2, and 3) that have expanding tails with increasing flight time, it has been confirmed that the reaction proceeds through metastable dissociation from the intermediate species C2H(5?m)DmO+(m = 0–5). The common shape of the H(3?n)DnO+ signal profiles contains two major distributions in the time constant, i.e., fast and slow components of <50 ns and ~500 ns, respectively. The H(3?n)DnO+ branching ratio is interpreted to be the result of complete scrambling of four hydrogen atoms at the C? C site in C2H4‐OH+, and partial exchange (18–38%) of a hydrogen atom in the OH group with four other hydrogen atoms within 1 ns prior to H(3?n)DnO+ production. Ab initio calculations for the isomers and transition states of C2H5O+ were also performed, and the observed H(3?n)DnO+ production mechanism has been discussed. In addition, a stable isomer having a complex structure and two isomerization pathways were discovered to contribute to the H3O+ formation process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Bare FeO+ reacts in the gas phase with benzene at collision rate (k = 1.3 × 10?9 cm3 molecule?1 s?1), giving rise to the formation of Fe(C6H4)+/H2O(5%), Fe(C5H6)+/CO(37%), Fe(C5H5)+/CO/H. (2%), and Fe+/C6H5OH (56%). Neither the reaction rate nor the product distribution are subject to a significant kinetic isotope effect, thus, ruling out several mechanistic variants described in the literature to the operative for ‘analogous’ arene oxidation processes in solution. A mechanism is suggested which is in keeping with the experimental findings, and which also accounts for some remarkable results obtained, when two [Fe, C6,H6H6O]+ isomers are generated and subjected to a neutralization-re-ionization experiment in the gas phase.  相似文献   

20.
Compacted and water saturated bentonite will be used as an engineered barrier in deep geological repositories for radioactive waste in many countries. Due to the high dose rate of ionizing radiation outside the canisters holding the nuclear waste, radiolysis of the interlayer and pore water in the compacted bentonite is unavoidable. Upon reaction with the oxidizing and reducing species formed by water radiolysis (OH, e(aq), H, H2O2, H2, HO2, H3O+), the overall redox properties in the bentonite barrier may change. In this study the influence of γ-radiation on the structural Fe(II)/FeTot ratio in montmorillonite and its reactivity towards hydrogen peroxide (H2O2) was investigated in parallel experiments. The results show that under anoxic conditions the structural Fe(II)/FeTot ratio of dispersed Montmorillonite increased from ≤3 to 25-30% after γ-doses comparable to repository conditions. Furthermore, a strong correlation between the structural Fe(II)/FeTot ratio and the H2O2 decomposition rate in montmorillonite dispersions was found. This correlation was further verified in experiments with consecutive H2O2 additions, since the structural Fe(II)/FeTot ratio was seen to decrease concordantly. This work shows that the structural iron in montmorillonite could be a sink for one of the major oxidants formed upon water radiolysis in the bentonite barrier, H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号