首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the structure of trans‐bis(ethanol‐κO)tetrakis(1H‐imidazole‐κN3)copper(II) bis[μ‐N‐(2‐oxidobenzylidene)‐D,L‐glutamato]‐κ4O1,N,O2′:O2′4O2′:O1,N,O2′‐bis[(1H‐imidazole‐κN3)cuprate(II)], [Cu(C3H4N2)4(C2H6O)2][Cu2(C15H14N3O5)2], both ions are located on centres of inversion. The cation is mononuclear, showing a distorted octahedral coordination, while the anion is a binuclear centrosymmetric dimer with a square‐pyramidal copper(II) coordination. An extensive three‐dimensional hydrogen‐bonding network is formed between the ions. According to B3LYP/6–31G* calculations, the two equivalent components of the anion are in doublet states (spin density located mostly on CuII ions) and are coupled as a triplet, with only marginal preference over an open‐shell singlet.  相似文献   

2.
Iron is of interest as a catalyst because of its established use in the Haber–Bosch process and because of its high abundance and low toxicity. Nitrogen‐heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron–NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1′‐bis(pyridin‐2‐yl)‐2,2‐bi(1H‐imidazole)‐κN3][3,3′‐bis(pyridin‐2‐yl‐κN)‐1,1′‐methanediylbi(1H‐imidazol‐2‐yl‐κC2)](trimethylphosphane‐κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C—C‐coupled biimidazole, is trapped by coordination to still‐intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.  相似文献   

3.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

4.
The molecular structures of the two mononuclear title complexes, namely (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(3‐phenylpropylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C14H21NS2)(C7H7OS)O], (I), and (4‐methoxybenzenethiolato‐κS)oxido[2,2′‐(propylimino)bis(ethanethiolato)‐κ3S,N,S′]technetium(V), [Tc(C7H15NS2)(C7H7OS)O], (II), exhibit the same coordination environment for the central Tc atoms. The atoms are five‐coordinated (TcNOS3) with a square‐pyramidal geometry comprising a tridentate 2,2′‐(3‐phenylpropylimino)bis(ethanethiolate) or 2,2′‐(propylimino)bis(ethanethiolate) ligand, a 4‐methoxybenzenethiolate ligand and an additional oxide O atom. Intermolecular C—H...O and C—H...S hydrogen bonds between the monomeric units result in two‐dimensional layers with a parallel arrangement.  相似文献   

5.
The structure of catena‐poly[[{bis[4‐(trimethylammonio)benzenethiolate‐κS]mercury(II)}‐μ‐1,1′‐(ethane‐1,2‐diyl)bis(1H‐benzimidazole)‐κ2N3:N3′] bis(hexafluoridophosphate) 0.25‐hydrate], {[Hg(C16H14N4)(C9H13NS)2](PF6)2·0.25H2O}n, contains a one‐dimensional zigzag chain. The HgII cation is coordinated by two S atoms of two 4‐(trimethylammonio)benzenethiolate (Tab) ligands and by two N atoms from two different 1,1′‐(ethane‐1,2‐diyl)bis(1H‐benzimidazole) ligands, forming a distorted seesaw‐shaped coordination geometry. The F atoms of the hexafluoridophosphate anion interact with the H atoms of the Tab ligand, generating a two‐dimensional network. Furthermore, this layer is connected to neighbouring layers via H...π interactions, thereby forming a three‐dimensional hydrogen‐bonded structure. In catena‐poly[[{[4‐(trimethylammonio)benzenethiolate‐κS]mercury(II)}bis[μ‐4‐(trimethylammonio)benzenethiolate‐κ2S:S]{[4‐(trimethylammonio)benzenethiolate‐κS]mercury(II)}‐μ‐1,1′‐(hexane‐1,6‐diyl)bis(1H‐benzimidazole)‐κ2N3:N3′] tetrakis(hexafluoridophosphate)], {[Hg2(C20H22N4)(C9H13NS)4](PF6)4}n, each HgII cation is coordinated by two S atoms of two Tab ligands and one N atom of the 1,1′‐(hexane‐1,6‐diyl)bis(1H‐benzimidazole) (hbbm) ligand, forming a distorted T‐shaped coordination geometry, while longer secondary Hg...S bonds join two such units across a centre of inversion to give the tetravalent cation. Adjacent {[Hg(Tab)2]2(μ‐hbbm)}4+ cations are linked through the centrosymmetric hbbm ligands to afford a one‐dimensional chain extending along the b axis. Several F atoms interact with the H atoms of the Tab and hbbm ligands, while the S atom interacts with an aromatic H atom of a different Tab ligand, to afford a complex intra‐ and intermolecular hydrogen‐bonding arrangement in a three‐dimensional structure.  相似文献   

6.
The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel ZnII complexes, namely bis(acetato‐κO)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II) monohydrate, [Zn(C13H15N5)2(C2H3O2)2]·H2O, ( 1 ), and bis(azido‐κN1)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II), [Zn(C13H15N5)2(N3)2], ( 2 ), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction analysis. Both complexes exhibit a three‐dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that ( 1 ) is a promising fluorescence sensor for detecting Fe3+ ions and ( 2 ) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.  相似文献   

7.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

8.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

9.
The dipyridyl‐type building blocks 4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole (3‐bpt) and 4,4′‐bipyridine (bpy) have been used to assemble with ZnII in the presence of trithiocyanuric acid (ttcH3) to afford two coordination compounds, namely bis[4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole‐κN3]bis(trithiocyanurato‐κ2N,S)zinc(II), [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O, (1), and catena‐poly[[[bis(trithiocyanurato‐κ2N,S)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] 4,4′‐bipyridine monosolvate], {[Zn2(C3H2N3S3)4(C10H8N2)3]·C10H8N2}n, (2). Single‐crystal X‐ray analysis indicates that complex (1) is a mononuclear structure, while complex (2) presents a one‐dimensional chain coordination motif. In both complexes, the central ZnII cation adopts an octahedral geometry, coordinated by four N‐ and two S‐donor atoms. Notably, trithiocyanurate (ttcH2) adopts the same bidentate chelating coordination mode in each complex and exists in the thione tautomeric form. The 3‐bpt co‐ligand in (1) adopts a monodentate coordination mode and serves as a terminal pendant ligand, whereas the 4,4′‐bipyridine (bpy) ligand in (2) adopts a bidentate–bridging coordination mode. The different coordination characters of the different N‐donor auxiliary ligands lead to structural diversity for complexes (1) and (2). Further analysis indicates that the resultant three‐dimensional supramolecular networks for (1) and (2) arise through intermolecular N—H...S and N—H...N hydrogen bonds. Both complexes have been further characterized by FT–IR spectroscopy and elemental analyses.  相似文献   

10.
Naphthalenediimides, a class of organic dyes with an expanded π‐electron‐deficient plane, have attracted considerable interest because of their photoinduced electron transfer from neutral organic moieties to stable anionic radicals. This makes them excellent candidates for organic linkers in the construction of photochromic coordination polymers. Such a photochromic two‐dimensional coordination polymer has been prepared using N,N′‐bis(pyridin‐4‐ylmethyl)naphthalene‐1,8:4,5‐bis(dicarboximide) (DPMNI). In crystallization tubes, upon slow diffusion of an MeOH solution of cadmium perchlorate into a CHCl3 solution of DPMNI, the complex poly[[bis[μ2‐2,7‐bis(pyridin‐4‐ylmethyl)benzo[imn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetrone‐κ2N:N′]bis(perchlorato‐κO)cadmium(II)] chloroform tetrasolvate], {[Cd(C26H16N4O4)2(ClO4)2]·4CHCl3}n, (I), was obtained. The asymmetric unit contains one Cd2+ cation, two DPMNI ligands, two coordinated ClO4 anions and four CHCl3 solvent molecules. Each Cd2+ cation is interconnected by four DPMNI linkers to generate a neutral two‐dimensional naphthalenediimide coordination network with all the ClO4 anions above or below this plane. Strong interlaminar anion–π interactions between the coordinated ClO4 anions and the imide rings of an adjacent layer lead to a three‐dimensional supramolecular structure. Compound (I) exhibits reversible photochromic behaviour and photocontrolled tunable luminescence properties, which may originate from the photoinduced electron‐transfer generation of radicals in the DPMNI ligand.  相似文献   

11.
Single crystals of the aluminium and gallium complexes of 6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenol), namely diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)aluminium(III) nitrate ethanol monosolvate, [Al(C22H18N2O4)(H2O)2]NO3·C2H5OH, 1 , and diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)gallium(III) nitrate ethanol monosolvate, [Ga(C22H18N2O4)(H2O)2]NO3·C2H5OH, 2 , were obtained after successful synthesis in ethanol. Both complexes crystallized in the triclinic space group P, with two molecules in the asymmetric unit. In both structures, in one of the independent molecules the tetradentate ligand is almost planar while in the other independent molecule the ligand shows significant distortions from planarity, as illustrated by the largest distance from the plane constructed through the central metal atom and the O,N,N′,O′‐coordinating atoms of the ligand in 1 of 1.155 (3) Å and a distance of 1.1707 (3) Å in 2 . The possible reason for this is that there are various strong π‐interactions in the structures. This was confirmed by density functional theory (DFT) calculations, as were the other crystallographic data. DFT was also used to predict the outcome of cyclic voltammetry experiments. Ligand oxidation is more stabilized in the gallium complex. Solid‐state photoluminescence gave an 80 nm red‐shifted spectrum for the gallium complex, whereas the aluminium complex maintains the ligand curve with a smaller red shift of 40 nm.  相似文献   

12.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

13.
The reaction of [FeL(MeOH)2] {where L is the tetradentate N2O2‐coordinating Schiff base‐like ligand (E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoate)(2−) and MeOH is methanol} with 3‐aminopyridine (3‐apy) in methanol results in the formation of the octahedral complex (3‐aminopyridine‐κN1){(E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoato)(2−)‐κ4O3,N,N′,O3′}(methanol‐κO)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3‐apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octahedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin‐crossover behavior. An infinite two‐dimensional hydrogen‐bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T‐dependent susceptibility measurements revealed that the complex remains in the high‐spin state over the entire temperature range investigated.  相似文献   

14.
A new three‐dimensional interpenetrated CdII–organic framework based on 3,3′‐azodibenzoic acid [3,3′‐(diazenediyl)dibenzoic acid, H2azdc] and the auxiliary flexible ligand 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb), namely poly[[bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′][μ2‐3,3′‐(diazenediyl)dibenzoato‐κ2O:O′]cadmium(II)] monohydrate], {[Cd(C14H8N2O4)(C10H14N2)2]·H2O}n, (1), was obtained by a typical solution reaction in mixed solvents (water and N,N′‐dimethylformamide). Each CdII centre is six‐coordinated by two O atoms of bis‐monodentate bridging carboxylate groups from two azdc2− ligands and by four N atoms from four bimb ligands, forming an octahedral coordination environment. The CdII ions are connected by the bimb ligands, resulting in two‐dimensional (4,4) layers, which are further pillared by the azdc2− ligands, affording a threefold interpenetrated three‐dimensional α‐Po topological framework with the Schläfli symbol 41263. The thermal stability and solid‐state fluorescence properties of (1) have been investigated.  相似文献   

15.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

16.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

17.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

18.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

19.
By employing the conjugated bithiophene ligand 5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene (bibp), which can exhibit trans and cis conformations, two different CuII coordination polymers, namely, poly[[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′](μ2‐4,4′‐oxydibenzoato‐κ2O:O′)copper(II)], [Cu(C14H8O5)(C14H10N4S2)]n or [Cu(bibp)(oba)]n, (I), and catena‐poly[μ‐aqua‐bis[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′]bis(μ3‐4,4′‐oxydibenzoato)‐κ3O:O′:O′′;κ4O:O′,O′′:O′‐dicopper(II)], [Cu2(C14H8O5)2(C14H10N4S2)(H2O)]n or [Cu2(bibp)(oba)2(H2O)]n, (II), have been prepared through one‐pot concomitant crystallization and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis, powder X‐ray diffraction (PXRD) and thermogravimetric (TG) analysis. Single‐crystal X‐ray diffraction indicates that the most interesting aspect of the structure is the existence of sole trans and cis conformations of the bibp ligand in a single net of (I) and (II), respectively. Compound (I) displays a threefold interpenetrating three‐dimensional framework with a 4‐connected {65.8} cds topology, whereas (II) features a one‐dimensional chain structure. In the crystal of (II), the polymeric chains are further extended through C—H…O hydrogen bonds and C—H…π interactions into a three‐dimensional supramolecular architecture. In addition, strong intramolecular O—H…O hydrogen bonds formed between the bridging water molecules and the carboxylate O atoms improve the stability of the framework of (II). Furthermore, solid‐state UV–Vis spectroscopy experiments show that compounds (I) and (II) exhibit optical band gaps which are characteristic for optical semiconductors, with values of 2.70 and 2.26 eV, respectively.  相似文献   

20.
The self‐assembly of ditopic bis(1H‐imidazol‐1‐yl)benzene ligands ( L H) and the complex (2,2′‐bipyridyl‐κ2N,N′)bis(nitrato‐κO)palladium(II) affords the supramolecular coordination complex tris[μ‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]‐triangulo‐tris[(2,2′‐bipyridyl‐κ2N,N′)palladium(II)] hexakis(hexafluoridophosphate) acetonitrile heptasolvate, [Pd3(C10H8N2)3(C12H10N4)3](PF6)6·7CH3CN, 2 . The structure of 2 was characterized in acetonitrile‐d3 by 1H/13C NMR spectroscopy and a DOSY experiment. The trimeric nature of supramolecular coordination complex 2 in solution was ascertained by cold spray ionization mass spectrometry (CSI–MS) and confirmed in the solid state by X‐ray structure analysis. The asymmetric unit of 2 comprises the trimetallic Pd complex, six PF6? counter‐ions and seven acetonitrile solvent molecules. Moreover, there is one cavity within the unit cell which could contain diethyl ether solvent molecules, as suggested by the crystallization process. The packing is stabilized by weak inter‐ and intramolecular C—H…N and C—H…F interactions. Interestingly, the crystal structure displays two distinct conformations for the L H ligand (i.e. syn and anti), with an all‐syn‐[Pd] coordination mode. This result is in contrast to the solution behaviour, where multiple structures with syn/anti‐ L H and syn/anti‐[Pd] are a priori possible and expected to be in rapid equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号