The interfacial behavior of self‐assembled thin films of benzoic acid (BA) and phenylphosphonic acid (PPOA) anchored on TiO2 surfaces was studied by using temperature‐dependent diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. On the basis of the disappearance of the OH band from the infrared spectra at room temperature, BA and PPOA appear to adsorb onto TiO2 surfaces through carboxylate and phosphonate groups, respectively. Above 420 °C, DRIFT spectra indicated that both BA and PPOA desorb from TiO2 surfaces; however, dissimilar desorption behavior could be inferred for BA and PPOA from their temperature‐dependent spectral changes. The benzene ring modes of PPOA remained above 420 °C, whereas those of BA disappeared. Density functional theory calculations showed that the adsorption of BA and PPOA on TiO2 surfaces corresponded to bidentate bridging geometry on TiO2 surfaces, and the adsorption of PPOA is stronger than that of BA. The monodentate structures with energy differences of 4.9 and 9.1 kcal mol?1 from the most stable bidentate structures of BA and PPOA, respectively, from the DFT calculations appeared to be possible, particularly at the high temperatures above 420 °C, as indicated by the intensified OH bands. The geometry of PPOA was also estimated to be more upright standing than that of BA on TiO2 surfaces, which may lead a rather straight detachment from the TiO2 surfaces based on the presence of in‐plane ring modes in the DRIFT spectra at the higher temperature. 相似文献
The thermochemical properties associated with the formation of an isomeric distribution of ROH???NH2CH2COO? clusters (R=H, CH3, C2H5) are measured by using high‐pressure mass spectrometry. A comparison of the measured properties with calculated values provides new insights into the thermochemical effects arising from the isomeric nature of this clustering system. When the distribution of isomers is correctly accounted for, the measured values of ΔH°, ΔS°, and ΔG°298 consistently agree, to a very high degree of accuracy, with those predicted by MP2(full)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) calculations. 相似文献
Guided by density functional theory (DFT) computations, a new series of superalkali‐based alkalides, namely FLi2+(aza222)K?, OLi3+(aza222)K?, NLi4+(aza222)K?, and Li3+(aza222)K? were designed with various superalkali clusters embedded into an aza222 cage‐complexant. These species possess diverse isomeric structures in which the encapsulated superalkalis preserve their identities and behave as alkali metal atoms. The results show that these novel alkalides possess larger complexation energies and enhanced hyperpolarizabilities (β0) compared with alkali‐metal‐based and previous superalkali‐based clusters. Especially, a prominent structural dependence of β0 is observed for these studied compounds. Hence, the geometric factors that affect the nonlinear optical (NLO) response of such alkalides is elucidated in detail in this work. This study not only provides novel candidates for alkalides, it also offers an effective way to enhance the NLO response and stability of alkalides. 相似文献
The hydrogen‐bond‐assisted self‐association process of a chiral semirigid carboxylic acid, namely, (+)‐(S)‐ketopinic acid, has been studied. The multiconformational monomer/dimer equilibrium has been evaluated by means of a concentration‐dependent FTIR study that enabled the experimental equilibrium constants of the dimer formation reaction (Kdim) to be determined in two solvents of different polarity. In CDCl3, dimeric forms predominate, even in diluted solutions ( =5.074), whereas in CD3CN the self‐association process is hindered and monomers are always the main species, irrespective of solute concentration ( =0.194). The reliability of the dimerization constants and the derived mono‐ and dimeric experimental fractions have been proven by means of accurate matching between the experimental vibrational circular dichroism spectra of the species and the theoretical spectra generated by considering the simultaneous weighted contributions of the concomitant monomers and dimers. 相似文献
Broken‐symmetry DFT calculations on transition‐metal clusters with more than two centers allow the hyperfine coupling constants to be extracted. Application of the proposed theoretical scheme to a tetranuclear manganese complex that models the S2 state of the oxygen‐evolving complex of photosystem II yields hyperfine parameters that can be directly compared with experimental data. The picture shows the metal–oxo core of the model and the following parameters; exchange coupling constant Jij, the expectation value of the site‐spin operator , and the isotropic hyperfine coupling parameters.
The copper hydride clusters [Cu14H12(phen)6(PPh3)4][X]2 (X=Cl or OTf; OTf=trifluoromethanesulfonate, phen=1,10‐phenanthroline) are obtained in good yields by the reaction of [(Ph3P)CuH]6 with phen, in the presence of a halide or pseudohalide source. The complex [Cu14H12(phen)6(PPh3)4][Cl]2 reacts with CO2 in CH2Cl2, in the presence of excess Ph3P, to form the formate complex [(Ph3P)2Cu(κ2‐O2CH)], along with [(phen)(Ph3P)CuCl]. 相似文献
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts.相似文献
In addition to generation of a methyl radical, formation of a formaldehyde molecule was observed in the thermal reaction of methane with AuNbO3+ heteronuclear oxide cluster cations. The clusters were prepared by laser ablation and mass‐selected to react with CH4 in an ion‐trap reactor under thermal collision conditions. The reaction was studied by mass spectrometry and DFT calculations. The latter indicated that the gold atom promotes formaldehyde formation through transformation of an Au?O bond into an Au?Nb bond during the reaction. 相似文献
The reactions of cerium–vanadium cluster cations CexVyOz+ with CH4 are investigated by time‐of‐flight mass spectrometry and density functional theory calculations. (CeO2)m(V2O5)n+ clusters (m=1,2, n=1–5; m=3, n=1–4) with dimensions up to nanosize can abstract one hydrogen atom from CH4. The theoretical study indicates that there are two types of active species in (CeO2)m(V2O5)n+, V[(Ot)2]. and [(Ob)2CeOt]. (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size‐dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2)m(V2O5)n+ clusters falls between those of (CeO2)2–4+ and (V2O5)1–5+ in terms of C?H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. 相似文献
Epoxidation made easy : Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations are used to identify key reaction intermediates and reaction pathways. The results confirm the high catalyst activity owing to the formation of propene oxide metallacycles. Al green, Au yellow, O red, and C gray.
Reactions of the binary, pseudo‐homoatomic Zintl anion (Pb2Bi2)2? with Ln(C5Me4H)3 (Ln=La, Ce, Nd, Gd, Sm, Tb) in the presence of [2.2.2]crypt in ethane‐1,2‐diamine/toluene yielded ten [K([2.2.2]crypt)]+ salts of lanthanide‐doped semimetal clusters with 13 or 14 surface atoms. Single‐crystal X‐ray diffraction and energy‐dispersive X‐ray spectroscopy indicated the presence of the anions [Ln@Pb6Bi8]3?, [Ln@Pb3Bi10]3?, [Ln@Pb7Bi7]4?, or [Ln@Pb4Bi9]4? in single or double salts; the latter showed various ratios of the components in the solid state. The anions are the first ternary intermetalloid clusters comprising only elements of the sixth period of the periodic table, namely, Pb, Bi and lanthanides. This study, which was complemented by ESI mass spectrometry and 139La NMR spectroscopy in solution, rationalizes a continuous development of the ratio of 13:14‐atom cages with the ionic radius of the embedded Ln3+ ion, which seems to select the most suitable cage type. Quantum chemical investigations helped to analyze this situation in more detail and to explain the observed subtle influence of the atomic radii. Magnetic measurements confirmed that the embedded Ln3+ ions keep their expected paramagnetic or diamagnetic nature. 相似文献
An air‐ and moisture‐stable nanoscale polyhydrido copper cluster [Cu32(H)20{S2P(OiPr)2}12] ( 1H ) was synthesized and structurally characterized. The molecular structure of 1H exhibits a hexacapped pseudo‐rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2×9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high‐resolution neutron diffraction to exhibit tri‐, tetra‐, and pentacoordinated hydrides in capping and interstitial modes. This result was further supported by a density functional theory investigation on the simplified model [Cu32(H)20(S2PH2)12]. 相似文献
The kinetics of reaction of the [W3PdS4H3(dmpe)3(CO)]+ hydride cluster ( 1 +) with HCl has been measured in dichloromethane, and a second‐order dependence with respect to the acid is found for the initial step. In the presence of added BF4? the second‐order dependence is maintained, but there is a deceleration that becomes more evident as the acid concentration increases. DFT calculations indicate that these results can be rationalized on the basis of the mechanism previously proposed for the same reaction of the closely related [W3S4H3(dmpe)3]+ cluster, which involves parallel first‐ and second‐order pathways in which the coordinated hydride interacts with one and two acid molecules, and ion pairing to BF4? hinders formation of dihydrogen bonded adducts able to evolve to the products of proton transfer. Additional DFT calculations are reported to understand the behavior of the cluster in neat acetonitrile and acetonitrile–water mixtures. The interaction of the HCl molecule with CH3CN is stronger than the W? H???HCl dihydrogen bond and so the reaction pathways operating in dichloromethane become inefficient, in agreement with the lack of reaction between 1 + and HCl in neat acetonitrile. However, the attacking species in acetonitrile–water mixtures is the solvated proton, and DFT calculations indicate that the reaction can then go through pathways involving solvent attack to the W centers, while still maintaining the coordinated hydride, which is made possible by the capability of the cluster to undergo structural changes in its core. 相似文献