首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical properties of a Ho3+/Yb3+ co‐doped CaSc2O4 oxide material are investigated in detail. The spectral properties are described as a function of doping concentrations. The efficient Yb3+→Ho3+ energy transfer is observed. The transfer efficiency approaches 50 % before concentration quenching. The concentration‐optimized sample exhibits a strong green emission accompanied with a weak red emission, showing perfect green monochromaticity. The results of the spectral distribution, power dependence, and lifetime measurements are presented. The green, red, and near‐infrared (NIR) emissions around 545, 660, and 759 nm are assigned to the 5F4+5S25I8, 5F55I8, and 5F4+5S25I7 transitions of Ho3+, respectively. The detailed study reveals the upconversion luminescence mechanism involved in a novel Ho3+/Yb3+ co‐doped CaSc2O4 oxide material.  相似文献   

2.
Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals with different content of dopant were successfully prepared via a facile hydrothermal method. The purity, morphology, element distribution, chemical state and up‐conversion (UC) photoluminescence (PL) of PbTiO3 nanocrystals affected by Ho3+ dopant are investigated systematically. X‐ray diffraction (XRD) results illustrate that PbTiO3 samples with the doping Ho3+ concentration ranging from 0 to 5 mol‐% are perovskite structure. The doping Ho3+ ions have no change on the crystal structure of perovskite PbTiO3. Owing to the non‐equivalent substitution of Ho3+ to Ti4+ in PbTiO3, the particle size of Ho3+/Yb3+ co‐doped PbTiO3 samples is decreased as well as the particle agglomeration is detected. Moreover, Ho and Yb ions have uniform distributions in the PbTiO3 nanoparticles as the presence of Ho3+ and Yb3+ cations. The up‐conversion spectra demonstrate that Ho/Yb co‐doped PbTiO3 samples have up‐conversion emissions centered at 550 nm, 660 nm and 755 nm, corresponding to the transitions of 5F4(5S2)→5I8, 5F55I8 and 5S2(5F4)→5I7 of Ho3+ ions. Additionally, the effect of temperature on the UC PL property of Ho3+/Yb3+ co‐doped PbTiO3 system is further investigated. The sensitivity and the trend of Ho3+/Yb3+ co‐doped PbTiO3 samples in temperature from 298 k to 493K are calculated on the basis of fluorescence intensity ratio (FIR) method. Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals are verified the high potential in the optical temperature sensing.  相似文献   

3.
《Analytical letters》2012,45(15):2594-2600
A co-doped LiNb0.3Ta0.7O3:Er3+,Yb3+ ceramic was prepared by a high temperature solid state procedure. Under the excitation of 980 nm laser radiation, intense 660 nm red light and 550 nm green light emissions corresponding to the 4F9/24I15/2 and 2H11/2/4S3/24I15/2 transitions of Er3+ were observed. The change of Yb3+ concentration has a more significant influence on luminous intensity than the Er3+ concentration. The emission of red and green lights is attributed to a two-photon process. The upconversion luminescence mechanisms were analyzed in detail.  相似文献   

4.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

5.
To develop new emission-tunable upconversion (UC) phosphors, the Sr3AlO4F:5%Yb3+, xEr3+, yHo3+ (0 ≤ x ≤ 1%, 0 ≤ y ≤ 1%) samples were prepared by conversional solid-state reaction method, and their luminescence properties upon 980 nm excitation were studied. Upon 980 nm excitation, Yb3+-Er3+ codoped Sr3AlO4F shows a predominant emission peak between 645 and 700 nm which is attributed to the 4F9/2-4I15/2 transition of Er3+, and the Er3+ green emissions have been almost quenched. In this case, the yellowish green emitting light is obtained. The possible reason was interpreted by the energy level diagram and the proposed UC mechanism. For Yb3+-Ho3+ codoped Sr3AlO4F, three emissions are observed obviously which are all derived from the Ho3+ ion. The corresponding chromaticity coordinates indicate a red emission has been gained. To realize the tunable emission, the typical Sr3AlO4F:5%Yb3+, 0.2%Er3+, 1%Ho3+ phosphor was developed, and its emission spectrum includes the emission peaks of both Er3+ and Ho3+. Correspondingly, the sample gives a yellow emission.  相似文献   

6.
The glasses of the composition (40 ? x)PbO–(5 + x)Al2O3–54SiO2:1.0Yb2O3 (in mol%) with x ranging from 5 to 10 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al3+ ions from tetrahedral to octahedral coordination with increase of Al2O3 content in the glass network. The optical absorption and luminescence spectra have exhibited bands originating from 2F7/2  2F5/2 and 2F5/2  2F7/2 transitions, respectively. From these spectra, the absorption and emission cross-sections and fluorescence lifetime of Yb3+ ions have been evaluated. Quantitative analysis of these data indicated a decreasing radiative trapping and increasing fluorescence lifetime of Yb3+ ions with increasing Al2O3 content. This may be explained by structural variations in the vicinity of Yb3+ ions due to variation in the concentration of Al2O3 in the glass network.  相似文献   

7.
Multifunctional NaGdF4:Yb3+,Er3+,Nd3+@NaGdF4:Nd3+ core–shell nanoparticles (called Gd:Yb3+,Er3+,Nd3+@Gd:Nd3+ NPs) with simultaneously enhanced near‐infrared (NIR)‐visible (Vis) and NIR‐NIR dual‐conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core–shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy‐transfer processes, Nd3+→Yb3+→Er3+ and Nd3+→Yb3+, respectively. The effects of Nd3+ concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd3+ content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb3+,Er3+,Nd3+@Gd:20 % Nd3+ NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core–shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.  相似文献   

8.
A set of new triple molybdates, LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45, was successfully manufactured by the microwave-accompanied sol–gel-based process (MAS). Yellow molybdate phosphors LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 with variation of the LixNa1-x (x = 0, 0.05, 0.1, 0.2, 0.3) ratio under constant doping amounts of Ho3+ = 0.05 and Yb3+ = 0.45 were obtained, and the effect of Li+ on their spectroscopic features was investigated. The crystal structures of LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) at room temperature were determined in space group I41/a by Rietveld analysis. Pure NaCaGd0.5Ho0.05Yb0.45(MoO4)3 has a scheelite-type structure with cell parameters a = 5.2077 (2) and c = 11.3657 (5) Å, V = 308.24 (3) Å3, Z = 4. In Li-doped samples, big cation sites are occupied by a mixture of (Li,Na,Gd,Ho,Yb) ions, and this provides a linear cell volume decrease with increasing Li doping level. The evaluated upconversion (UC) behavior and Raman spectroscopic results of the phosphors are discussed in detail. Under excitation at 980 nm, the phosphors provide yellow color emission based on the 5S2/5F45I8 green emission and the 5F55I8 red emission. The incorporated Li+ ions gave rise to local symmetry distortion (LSD) around the cations in the substituted crystalline structure by the Ho3+ and Yb3+ ions, and they further affected the UC transition probabilities in triple molybdates LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45. The complex UC intensity dependence on the Li content is explained by the specificity of unit cell distortion in a disordered large ion system within the scheelite crystal structure. The Raman spectra of LixNa1-xCaGd0.5(MoO4)3 doped with Ho3+ and Yb3+ ions were totally superimposed with the luminescence signal of Ho3+ ions in the range of Mo–O stretching vibrations, and increasing the Li+ content resulted in a change in the Ho3+ multiplet intensity. The individual chromaticity points (ICP) for the LiNaCaGd(MoO4)3:Ho3+,Yb3+ phosphors correspond to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.  相似文献   

9.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

10.
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3Bpy and Eu(DBM)3Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2′-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+, resulting in a high quantum yield of 0.67 % at 2.1 W cm−2. The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+-based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.  相似文献   

11.
《Solid State Sciences》2012,14(2):236-240
LaGaO3:Tm3+, Yb3+ powder was synthesized by a high-energy ball milling (HEB) and a conventional solid state reaction (SSR). The X-ray diffraction patterns confirmed the LaGaO3:Tm3+, Yb3+ powder phosphors to have an orthorhombic structure. The spectrum consisted of 1G4 → 3H6, weak 1G4 → 3F4, and intense 3H4 → 3H6 transition bands within the f12 configuration of Tm3+, together with the 2F5/2 → 2F7/2 transition of Yb3+. Up-converted emission of the LaGaO3:Tm3+, Yb3+ powders were observed under laser diode excitation of 975 nm. The PL intensity of the HEB-LaGaO3:Tm3+, Yb3+ powders sintered at 1300 °C were higher than those of all LaGaO3:Tm3+, Yb3+ powder samples examined. The energy transition probability of HEB-LaGaO3:Tm3+, Yb3+ powders are higher than that of the SSR-LaGaO3:Tm3+, Yb3+ powders. Compared to the solid state reaction method, synthesis by high-energy ball milling is simple and provides improved crystallinity of the host.  相似文献   

12.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

13.
This paper reports on comparative investigation of structure and luminescence properties of tetragonal LiYF4 and BaYF5, and hexagonal NaYF4 phosphors codoped with Er3+/Yb3+ by a facile hydrothermal synthesis. The products were characterized by X-ray diffractometer, scanning electron microscope, and photoluminescence spectroscopy. Intense visible emissions centered at around 525, 550 and 650 nm, originated from the transitions of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 of Er3+, respectively, have been observed in all the samples upon excitation with a 980 nm laser diode, and the involved mechanisms have been explained. Based on the green up-conversion emission performance, the Yb3+ concentrations of Er3+/Yb3+-codoped LiYF4, BaYF5, and NaYF4 phosphors have been optimized to be 10, 20, and 20 mol.%, respectively. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photon contribute to up-conversion of the green–red emissions.  相似文献   

14.

Substitutional, continuous solid solution of the general formula Y2–xYbxO3 was obtained from the mixture of Y2O3 and Yb2O3 oxides, for the first time by the mechanochemical method in a high-energy ball milling. The monophasic samples of nanocrystalline solid solution for x?>?0.00 and x?<?2.00 were examined by the methods: XRD, DTA, SEM, IR and UV–Vis–DR. As follows from the results, the solid solution crystallizes in cubic system and is isostructural with Y2O3 and Yb2O3. The solution is stable in the air atmosphere up to at least 900°C, and its decomposition temperature decreases with the increase in x, that is, with decreasing number of Yb3+ ions replacing Y3+ ions in the crystal lattice of Y2O3. The energy band gap estimated for the solid solution varies from?~?5.30 eV for x?=?0.50 to?~?4.90 eV for x?=?1.50, which means that it is an insulator.

  相似文献   

15.
综合ZnO-Al_2O_3-SiO_2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho~(3+)/Yb~(3+)共掺以ZnAl_2O_4为主晶相的ZnO-Al_2O_3-GeO_2-SiO_2系玻璃陶瓷。因[GeO_4]四面体和[SiO_4]四面体都是玻璃网络形成体,讨论了GeO_2取代SiO_2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO_2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho~(3+)/Yb~(3+)掺杂比对样品上转换发光的影响,最终结果表明当Ho~(3+)/Yb~(3+)掺杂比为1∶11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

16.
The monodisperse array and nanowires of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol–gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:Eu3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra of Y2O3:Eu3+/AAO composite films were measured. The characteristic red emission peak of Eu3+ ion attributed to 5D07F2 transition in Y2O3:Eu3+/AAO nanowires broadened its halfwidth.  相似文献   

17.
Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3 ) codoped yt-trium lithium fluoride (LiYF4) single crystals grown by an improved Bridgman method. The luminescent properties of the crystals were measured through photoluminescence excitation, emission spectra and decay curves. Luminescence between 960 and 1050 nm from Yb3 : 2F5/22F7/2 transition, which was originated from the DC from Tm3 ions to Yb3 ions, was observed under the excitation of blue photon at 465 nm. Moreover, the energy transfer processes were studied based on the Inokuti-Hirayama model, and the results indicated that the energy transfer from Tm3 to Yb3 was an electric dipole-dipole interaction. The max-imum quantum cutting effciency approached up to 167.5% in LiYF4 single crystal codoped with 0.49mol% Tm3 and 5.99mol% Yb3 . Application of this crystal has prospects for increasing the energy e ciency of crystalline Si solar cells by photon doubling of the high energy part of the solar spectrum  相似文献   

18.
The luminescence properties of 2%Er3+/15%Yb3+ doped LnP0.5V0.5O4 (LnPVO4) (Ln = Y, Gd, La) phosphors, synthesized via the traditional citric-assisted Sol gel method, are studied under light excitations of 980 nm and 325 nm to generate the 2H11/2/4S3/24I15/2 transitions via up- and downshifting mechanisms, respectively. The phase purity of the samples was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). We present herein a comparative study of the spectral and temperature sensing properties of LnPVO4: Er3+/Yb3+ (Ln = Y, Gd, La) phosphors. The crystal field effects on the up-shifting luminescence and on the thermometric parameters are investigated by the substitution of Er3+ ions on Y3+, Gd3+ or La3+ sites in the YPVO4, GdPVO4 and LaPVO4 hosts respectively. Fluorescence intensity ratio (FIR) technique was used to study the temperature sensing behavior of the phosphors. This study showed that downshifting emission gives the highest thermal sensitivities and the greatest thermal resolution compared to downshifting emission. These outcomes indicate that these materials are preferred for use in the luminescence temperature sensing in a down-conversion process to provide the greatest performance.  相似文献   

19.
Tm3+/Yb3+ codoped rod-like YF3 nanocrystals were synthesized through a facile hydrothermal method. After annealing in an argon atmosphere, the nanocrystals emitted bright blue and intense ultraviolet (UV) light under a 980-nm continuous wave diode laser excitation. Up-conversion emissions centered at ∼291 nm (1I6 → 3H6), ∼347 nm (1I6 → 3F4), ∼362 nm (1D2 → 3H6), ∼452 nm (1D2 → 3F4), ∼476 nm (1G4 → 3H6), ∼642 nm (1G4 → 3F4), and ∼805 nm (3H4 → 3H6) were recorded using a fluorescence spectrophotometer. Especially, enhanced UV emissions were studied by changing Yb3+/Tm3+ doping concentrations, the annealing temperatures, and the excitation power densities. A possible mechanism, energy transfer-cross relaxation-energy transfer (ET-CR-ET), was proposed based on a simple rate-equation model to elucidate the process of the enhanced UV emissions.  相似文献   

20.
Polytitanasiloxane solutions containing Eu3+ ions have been prepared by the hydrolytic cocondensation of tetraethoxysilane and tetrabutyl titanate. The UV‐vis absorption and the luminescence intensity were both found to increase with the increase of tetrabutyl titanate/tetraethoxysilane (TBT/TEOS) molar ratio. This revealed that the incorporation of TiO2 can result in the increase of absorption energy of the Ti? O group by near‐UV excitation and in the increase of energy transfer to the metal ion. At the same time, the intensity ratio of 5D07F2 to 5D07F1 increases as the TBT/TEOS molar ratio increases, indicating the formation of Eu3+? O2?? Ti4+ bonding. A longer decay time means that the Eu3+ ions are better dispersed and less clustered with the increase of TBT/TEOS molar ratio. The results on the luminescence properties of the Eu3+ in different media containing ethanol or water suggest that the incorporation of TiO2 can shield Eu3+ ions from the effect of water and ethanol molecules, which leads to an improvement of the Eu3+ surroundings. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1357–1363, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号