首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A BODIPY‐based bis(3‐pyridyl) ligand undergoes self‐assembly upon coordination to tetravalent palladium(II) cations to form a Pd6L12 metallosupramolecular assembly with an unprecedented structural motif that resembles a rotaxane‐like cage‐in‐ring arrangement. In this assembly the ligand adopts two different conformations—a C‐shaped one to form a Pd2L4 cage which is located in the center of a Pd4L8 ring consisting of ligands in a W‐shaped conformation. This assembly is not mechanically interlocked in the sense of catenation but it is stabilized only by attractive π‐stacking between the peripheral BODIPY chromophores and the ligands’ skeleton as well as attractive van der Waals interactions between the long alkoxy chains. As a result, the co‐arrangement of the two components leads to a very efficient space filling. The overall structure can be described as a rotaxane‐like assembly with a metallosupramolecular cage forming the axle in a metallosupramolecular ring. This unique structural motif could be characterized via ESI mass spectrometry, NMR spectroscopy, and X‐ray crystallography.  相似文献   

2.
Scanning tunneling microscopy (STM) was employed to investigate the adsorption of the linear-spacer-bridged ligands bis(pyrrol-2-yl-methyleneamine) (BPMB and BPMmB), and their Zn(II)-coordinated complexes, BPMB/Zn(II) and BPMmB/Zn(II), onto a Au(111) surface in 0.1 M HClO(4) solution. Both the ligands, with different spacer bridges, and their Zn(II) complexes adsorb onto the Au(111) surface and self-organize into highly ordered two-dimensional arrays. The complexes BPMB/Zn(II) and BPMmB/Zn(II) appear in helical and triangular conformations, respectively, consistent with their chemical structures. Although the metal complexes include ligands, the assembled structures and adlayer symmetries of the ligands and complexes are totally different. The structures and intramolecular features obtained by high-resolution STM imaging are discussed. The results should be important in fabricating surface supramolecular structures.  相似文献   

3.
Mes*‐substituted 2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene, 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, and 3,3‐diphenyl‐1,3‐diphosphapropenes (Mes*=2,4,6‐tri‐tert‐butylphenyl) were employed as P ligands of gold(I) complexes. The (E,E)‐2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene functioned as a P2 ligand for digold(I) complex formation with or without intramolecular Au–Au contact, which depends on the conformation of the 1,3‐diphosphabuta‐1,3‐diene. The 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, which has a rigid s‐cis P?C? C?P skeleton, afforded the corresponding digold(I) complexes with a slight distortion of the planar diphosphinidenecyclobutene framework and intramolecular Au–Au contact. In the case of the 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, only the phosphorus atom coordinated to gold, and the sulfur atom showed almost no intra‐ or intermolecular coordination to gold. On the other hand, the 1,3‐diphosphapropenes behaved as nonequivalent P2 ligands to afford the corresponding mono‐ and digold(I) complexes. Some phosphaalkene–gold(I) complexes showed catalytic activity for 1,6‐enyne cycloisomerization without cocatalysts such as silver hexafluoroantimonate.  相似文献   

4.
The reactions of di(2‐thienyl)mercury, 2‐thienylmercury chloride and 2‐furylmercury chloride with a variety of nitrogen‐ and phosphorus‐containing ligands have been studied. The presence of the electron‐withdrawing heteroatoms results in these mercurials being stronger acceptors than the corresponding phenylmercury compounds. The complexes have been characterized by elemental analysis, melting points, infrared, and 199Hg NMR spectroscopy. 2,9‐Dimethyl‐ and 3,4,7,8‐tetramethyl‐phenanthroline form 1:1 chelate complexes, as does 1,2‐bis(diphenylphosphino)ethane, whereas ethylenediamine and 2,2′‐bipyridyl do not form complexes. Though non‐chelating ligands such as 2,4′‐ and 4,4′‐bipyridyl do not form complexes, bis(diphenylphosphino)methane forms 1:2 complexes in which the ligand bridges two mercury atoms. Monodentate ligands, such as triphenylphosphine, cause disproportionation of the organomercury chloride. 2‐Thienylmercury chloride forms a 4:1 complex with 4,4′‐dipyridyl disulfide in which it is believed that a molecule of the organomercurial is coordinated to both of the nitrogen and both of the sulfur atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We report a NaOH‐mediated NaBH4 reduction method for the synthesis of mono‐, bi‐, and tri‐thiolate‐protected Au25 nanoclusters (NCs) with precise control of both the Au core and thiolate ligand surface. The key strategy is to use NaOH to tune the formation kinetics of Au NCs, i.e., reduce the reduction ability of NaBH4 and accelerate the etching ability of free thiolate ligands, leading to a well‐balanced reversible reaction for rapid formation of thermodynamically favorable Au25 NCs. This protocol is facile, rapid (≤3 h), versatile (applicable for various thiolate ligands), and highly scalable (>1 g Au NCs). In addition, bi‐ and tri‐thiolate‐protected Au25 NCs with adjustable ratios of hetero‐thiolate ligands were easily obtained. Such ligand precision in molecular ratios, spatial distribution and uniformity resulted in richly diverse surface landscapes on the Au NCs consisting of multiple functional groups such as carboxyl, amine, and hydroxy. Analysis based on NMR spectroscopy revealed that the hetero‐ligands on the NCs are well distributed with no ligand segregation. The unprecedented synthesis of multi‐thiolate‐protected Au25 NCs may further promote the practical applications of functional metal NCs.  相似文献   

6.
While bound organic ligands provide steric protection against aggregation for metallic nanoparticles in solution, they can block a large fraction of the surface atoms which are needed for binding in catalysis and sensing applications. In this work, highly accessible Au nanoparticles ligated with bis(diphenylphosphine) molecules are synthesized and characterized in solution. Characterization is performed using high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence chemisorption experiments. These synthesized nanoparticles are accessible to a 2-napthalenethiol (2-NT) probe molecule in solution. The highest 2-NT accessibility is observed when using 1,1-bis(diphenylphosphino)methane (dppm) ligand where 61 % of the total gold atoms are accessible. It is hypothesized that increasing the rigidity of the bis(diphenylphosphine) ligand increases the number of binding sites on the Au nanoparticles. These nanoparticles are catalytically active for resazurin reduction, and the resazurin reduction rate scales with the number of binding sites.  相似文献   

7.
We synthesised palladium and platinum complexes possessing cyclic and acyclic pincer‐type polyaromatic ligands and investigated their structural effect on the catalysis. The pincer‐type bis(6‐arylpyridin‐2‐yl)benzene skeleton was constructed via Kröhnke pyridine synthesis under transition metal‐free conditions on gram‐scale quantity. Ligand structure significantly influenced catalytic activity toward the platinum‐catalysed hydrosilylation of diphenyl acetylenes, despite the ligand‐independence of the conformations and electronic properties of these complexes.  相似文献   

8.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

9.
X‐ray crystal structures of two [(diphosphine)Au2Cl2] complexes (in which diphosphine=P‐Phos and xylyl‐P‐Phos; P‐Phos=[2,2′,6,6′‐Tetramethoxy‐4,4′‐bis(diphenylphosphino)‐3,3′‐bipyridine]) were determined and compared to the reported structures of similar atropisomeric gold complexes. Correlations between the Au???Au distances and torsional angles for the biaryl series of ligands (MeOBIPHEP, SEGPhos, and P‐Phos; BIPHEP=2,2′‐bis(diphenylphosphino)‐1,1′‐biphenyl, SEGPhos=[(4,4′‐bi‐1,3‐benzodioxole)‐5,5′‐diyl]bis[diphenylphosphine]) can be made; these measurements appear to be very dependent upon the phosphorous substituent. Conversely, the same effect was not observed for ligands based on the binaphthyl (BINAP) series. The catalytic activity of these complexes was subsequently assessed in the enantioselective cycloisomerisation of 1,6‐enynes and revealed an over‐riding electronic effect: more‐electron‐rich phosphines promote greater enantioselectivity. The possibility of silver acting as a (co‐)catalyst was ruled out in these reactions.  相似文献   

10.
The coordination chemistry of the tetrakis(thiophosphinato)resorcinarene sulfur-donor ligands [(C6H2CH{CH2CH2Ph})4{OC(O)R}4{OP(=S)Ph2}4] (L), where R = OCH2Ph, 4-C6H4CH3, C6H11, C4H3S, or OCH2CCH, is reported. Both silver(I) and gold(I) form cationic complexes of the type [LM2]2+, in which the ligand acts as a bis(chelate) in forming complexes with linear S-M-S (M = Ag or Au) stereochemistry. Gold(I) also forms the unusual complex [L(AuCl)2][LAu2]2+, which forms a supramolecular polymer through intermolecular aurophilic attractions. Palladium(II) forms the complex [LPd2Cl2(mu-Cl)2], in which the dipalladium(II) unit extends the natural bowl structure of the resorcinarene. The solid-state and solution conformations of the complexes, as determined by X-ray structure determination and NMR spectroscopy, respectively, are similar, but several complexes were found to exhibit dynamic behavior in solution, involving either conformational mobility of the resorcinarene unit or intermolecular ligand exchange.  相似文献   

11.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

12.
The coordination sphere of the Fe(II) terpyridine complex 1 is rigidified by fourfold interlinking of both terpyridine ligands. Profiting from an octa‐aldehyde precursor complex, the ideal dimensions of the interlinking structures are determined by reversible Schiff‐base formation, before irreversible Wittig olefination provided the rigidified complex. Reversed‐phase HPLC enables the isolation of the all‐trans isomer of the Fe(II) terpyridine complex 1 , which is fully characterized. While temperature independent low‐spin states were recorded with superconducting quantum interference device (SQUID) measurements for both, the open precursor 8 and the interlinked complex 1 , evidence of the increased rigidity of the ligand sphere in 1 was provided by proton T2 relaxation NMR experiments. The ligand sphere fixation in the macrocyclized complex 1 even reaches a level resisting substantial deformation upon deposition on an Au(111) surface, as demonstrated by its pristine form in a low temperature ultra‐high vacuum scanning tunneling microscope experiment.  相似文献   

13.
Reaction of zinc(II) thiocyanate with pyrazine, pyrimidine, pyridazine, and pyridine leads to the formation of new zinc(II) thiocyanato coordination compounds. In bis(isothiocyanato‐N)‐bis(μ2‐pyrazine‐N,N) zinc(II) ( 1 ) and bis(isothiocyanato‐N)‐bis(μ2‐pyrimidine‐N,N) zinc(II) ( 2 ) the zinc atoms are coordinated by four nitrogen atoms of the diazine ligands and two nitrogen atoms of the isothiocyanato anions within slightly distorted octahedra. The zinc atoms are connected by the diazine ligands into layers, which are further linked by weak intermolecular S ··· S interactions in 1 and by weak intermolecular C–H ··· S hydrogen bonding in 2 . In bis(isothiocyanato‐N)‐bis(pyridazine‐N) ( 3 ) discrete complexes are found, in which the zinc atoms are coordinated by two nitrogen atoms of the isothiocyanato ligands and two nitrogen atoms of the pyridazine ligands. The crystal structure of bis(isothiocyanato‐N)‐tetrakis(pyridine‐N) ( 4 ) is known and consists of discrete complexes, in which the zinc atoms are octahedrally coordinated by two thiocyanato anions and four pyridine molecules. Investigations using simultaneous differential thermoanalysis and thermogravimetry, X‐ray powder diffraction and IR spectroscopy prove that on heating, the ligand‐rich compounds 1 , 2 , and 3 decompose without the formation of ligand‐deficient intermediate phases. In contrast, compound 4 looses the pyridine ligands in two different steps, leading to the formation of the literature known ligand‐deficient compound bis(isothiocyanato‐N)‐bis(pyridine‐N) ( 5 ) as an intermediate. The crystal structure of compound 5 consists of tetrahedrally coordinated zinc atoms which are surrounded by two isothiocyanato anions and two pyridine ligands. The structures and the thermal reactivity are discussed and compared with this of related transition metal isothiocyanates with pyrazine, pyrimidine, pyridazine, and pyridine.  相似文献   

14.
This paper describes reactions in which ligands are exchanged and metals are transferred between monolayer-protected metal clusters (MPCs) that are in different phases (heterophase exchange) or are in the same phase. For example, contact of toluene solutions of alkanethiolate-coated gold MPCs with aqueous solutions of tiopronin-coated gold MPCs yields toluene-phase MPCs that have some tiopronin ligands and aqueous-phase MPCs that have some alkanethiolate ligands. In a second example, heterophase transfer reactions occur between toluene solutions of alkanethiolate-coated gold MPCs and aqueous solutions of tiopronin-coated silver MPCs, in which tiopronin ligands are transferred to the former and gold metal to the latter phase. These ligand and metal exchange reactions are inhibited when conducted under N(2). The results implicate participation of an oxidized form of Au (such as a Au(I) thiolate, Au(I)-SR) as both a ligand and metal carrier in the exchange reactions. Au(I)-SR is demonstrated to be an exchange catalyst.  相似文献   

15.
Au nanoparticles are functionalized with thioaniline electropolymerizable units and mercaptophenyl boronic acid ligands. Flavin adenine dinucleotide (FAD) is linked to the boronic acid ligands and apo‐glucose oxidase, apo‐GOx, is reconstituted on the FAD cofactor units to yield enzymes in a structurally‐aligned configuration in respect to the Au NPs. Electropolymerization of the enzyme‐functionalized Au NPs on a thioaniline‐modified Au electrode yields a three‐dimensional bis‐aniline‐crosslinked Au NPs/reconstituted glucose oxidase matrix on the electrode that reveals effective electrical contacting with the electrode.  相似文献   

16.
The reaction between dibenzylideneacetone (dba) and triisopropyl sulfoxonium tetrafluoroborate has been reinvestigated. The stereochemistry of the major diasteromeric bis(gem‐dimethylcyclopropane) adduct has now been assigned as [(1RS,3RS)‐2,2‐dimethyl‐3‐phenylcyclopropyl][(1SR,3SR)‐2,2‐dimethyl‐3‐phenylcyclopropyl]methanone, C23H26O, by X‐ray crystallographic studies on a twinned crystal. The asymmetric unit contains two molecules of the adduct, the conformations of which differ in the orientation of the phenyl ring relative to the adjacent cyclopropanated double bond. The carbonyl groups of each adduct are aligned approximately along the a axis and in opposite directions to each other. The molecules pack to give a sinusoidal pattern along the b axis. This is the first acyclic bis(dimethylcyclopropyl) ketone for which an X‐ray crystal structure determination has been reported, and is also the first bis‐cyclopropanated dba analogue. The knowledge that the major diastereomer has the meso structure (and therefore the confirmation that the minor isomer is the racemate) will prove invaluable in future studies to utilize bis(dimethylcyclopropyl) ketones as reagents, in rearrangement processes, and as potential ligands and ligand precursors in organometallic chemistry.  相似文献   

17.
During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultrasmall Au clusters AuN (N < 12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 (Ph = phenyl) and a bidentate phosphine ligand P(Ph)2(CH2)(M)P(Ph)2 are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high-resolution mass spectrometry and UV-vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M of the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)(M)P(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.  相似文献   

18.
A series of monodentate neutral and anionic phosphorus ligands was synthesized and evaluated in the asymmetric rhodium‐catalyzed hydrogenation of functionalized olefins by using either catalysts containing identical ligands or catalysts generated from mixtures of two different ligands. We expected that the combination of an anionic ligand with a neutral ligand would favor the formation of hetero over homo bis‐ligand complexes due to charge repulsion. NMR spectroscopic studies confirmed that charge effects can indeed shift the equilibrium toward the hetero bis‐ligand complexes. In several cases, the combination of a neutral phosphane with an anionic phosphane, one chiral and the other achiral, furnished significantly higher enantioselectivities than analogous mixtures of two neutral ligands. The best results were obtained with a mixture of an anionic phosphoramidite and a neutral phosphoric acid diester. It is supposed that in this case a hydrogen bond between the two ligands additionally stabilizes the hetero ligand combination.  相似文献   

19.
The synthesis of bis(formazanate) zinc complexes is described. These complexes have well‐behaved redox‐chemistry, with the ligands functioning as a reversible electron reservoir. This allows the synthesis of bis(formazanate) zinc compounds in three redox states in which the formazanate ligands are reduced to “metallaverdazyl” radicals. The stability of these ligand‐based radicals is a result of the delocalization of the unpaired electron over four nitrogen atoms in the ligand backbone. The neutral, anionic, and dianionic compounds (L2Zn0/?1/?2) were fully characterized by single‐crystal X‐ray crystallography, spectroscopic methods, and DFT calculations. In these complexes, the structural features of the formazanate ligands are very similar to well‐known β‐diketiminates, but the nitrogen‐rich (NNCNN) backbone of formazanates opens the door to redox‐chemistry that is otherwise not easily accessible.  相似文献   

20.
Ab initio electronic structure calculations on a series of ligands, p-RC6H4NC:, indicate, that the energy of the LUMO correlates with the electron-withdrawing/donating capabilities of the substituent group, which determines the relative pi-acidity of the ligand. Depending on the nature of the para substituent group on the aryl isocyanide ligand, bis(aryl isocyanide) complexes of tungsten-containing bulky bidentate arylphosphine ligands adopt either cis or trans conformations. The frontier molecular orbital formalism predicts that strong pi-acids, which contain electron-withdrawing groups, tend to polarize sufficient charge density away from the metal center to effect the formation of the sterically less favorable but electronically stabilized cis conformer. Density functional theory calculations on similar complexes containing phosphines which do not impose severe steric contraints indicate that the balance between steric and electronic stabilization can be effectively predicted by comparing the relative energies of the ligand LUMOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号